A nonparametric Riemannian framework for processing high angular resolution diffusion images (HARDI)

High angular resolution diffusion imaging has become an important magnetic resonance technique for in vivo imaging. Most current research in this field focuses on developing methods for computing the orientation distribution function (ODF), which is the probability distribution function of water molecule diffusion along any angle on the sphere. In this paper, we present a Riemannian framework to carry out computations on an ODF field. The proposed framework does not require that the ODFs be represented by any fixed parameterization, such as a mixture of von Mises-Fisher distributions or a spherical harmonic expansion. Instead, we use a non-parametric representation of the ODF, and exploit the fact that under the square-root re-parameterization, the space of ODFs forms a Riemannian manifold, namely the unit Hilbert sphere. Specifically, we use Riemannian operations to perform various geometric data processing algorithms, such as interpolation, convolution and linear and nonlinear filtering. We illustrate these concepts with numerical experiments on synthetic and real datasets.

[1]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[2]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[3]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[4]  Rachid Deriche,et al.  High Angular Resolution Diffusion MRI Segmentation Using Region-Based Statistical Surface Evolution , 2009, Journal of Mathematical Imaging and Vision.

[5]  Rachid Deriche,et al.  Riemannian Framework for Estimating Symmetric Positive Definite 4th Order Diffusion Tensors , 2008, MICCAI.

[6]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[7]  A. Lynn Abbott,et al.  Dimensionality Reduction and Clustering on Statistical Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Carl-Fredrik Westin,et al.  Geodesic-Loxodromes for Diffusion Tensor Interpolation and Difference Measurement , 2007, MICCAI.

[9]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[12]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[13]  René Vidal,et al.  Unsupervised Riemannian Clustering of Probability Density Functions , 2008, ECML/PKDD.

[14]  Baba C. Vemuri,et al.  Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures , 2006, ECCV.

[15]  Anuj Srivastava,et al.  Riemannian Analysis of Probability Density Functions with Applications in Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[17]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[18]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[19]  M. Berger A Panoramic View of Riemannian Geometry , 2003 .

[20]  Paul M. Thompson,et al.  Brain Fiber Architecture, Genetics, and Intelligence: A High Angular Resolution Diffusion Imaging (HARDI) Study , 2008, MICCAI.

[21]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[22]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[23]  Baba C. Vemuri,et al.  Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI , 2007, IPMI.

[24]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[25]  Xiuwen Liu,et al.  A Computational Approach to Fisher Information Geometry with Applications to Image Analysis , 2005, EMMCVPR.

[26]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[27]  Hanno Scharr,et al.  Riemannian Anisotropic Diffusion for Tensor Valued Images , 2008, ECCV.

[28]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[29]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[30]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[31]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .