On the generalizations of Poisson structures

The characterization of the Nambu-Poisson n-tensors as a subfamily of the Generalized-Poisson ones recently introduced (and here extended to the odd order case) is discussed. The homology and cohomology complexes of both structures are compared, and some physical considerations are made.

[1]  L. Takhtajan Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.

[2]  D. D. Diego,et al.  Dynamics of generalized Poisson and Nambu–Poisson brackets , 1997 .

[3]  J. M. Izquierdo,et al.  The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures , 1996, hep-th/9612186.

[4]  J. Hietarinta NAMBU TENSORS AND COMMUTING VECTOR FIELDS , 1996, solv-int/9608010.

[5]  J. A. Azcárraga,et al.  THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.

[6]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[7]  M. Flato,et al.  Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.

[8]  R. Chatterjee,et al.  Aspects of classical and quantum Nambu mechanics , 1995, hep-th/9507125.

[9]  P. Guha,et al.  On decomposability of Nambu-Poisson tensor. , 1996 .

[10]  M. C. Valsakumar,et al.  NONEXISTENCE OF QUANTUM NAMBU MECHANICS , 1994 .

[11]  J. Stasheff,et al.  Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.

[12]  Sahoo,et al.  Nambu mechanics and its quantization. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  I. Bialynicki-Birula,et al.  Quantum Mechanics as a Generalization of Nambu Dynamics to the Weyl-Wigner Formalism , 1991 .

[14]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[15]  E. Sudarshan,et al.  Relation between Nambu and Hamiltonian mechanics , 1976 .

[16]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.