Reconstructing targetable pathways in lung cancer by integrating diverse omics data

Global 'multi-omics' profiling of cancer cells harbours the potential for characterizing the signalling networks associated with specific oncogenes. Here we profile the transcriptome, proteome and phosphoproteome in a panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct targetable networks associated with KRAS dependency. We develop a two-step bioinformatics strategy addressing the challenge of integrating these disparate data sets. We first define an 'abundance-score' combining transcript, protein and phospho-protein abundances to nominate differentially abundant proteins and then use the Prize Collecting Steiner Tree algorithm to identify functional sub-networks. We identify three modules centred on KRAS and MET, LCK and PAK1 and β-Catenin. We validate activation of these proteins in KRAS-dependent (KRAS-Dep) cells and perform functional studies defining LCK as a critical gene for cell proliferation in KRAS-Dep but not KRAS-independent NSCLCs. These results suggest that LCK is a potential druggable target protein in KRAS-Dep lung cancers.

[1]  Steven P Gygi,et al.  Signaling networks assembled by oncogenic EGFR and c-Met , 2008, Proceedings of the National Academy of Sciences.

[2]  Douglas G Altman,et al.  Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets , 2008, PLoS medicine.

[3]  Jeffrey W. Smith,et al.  Mass Spectrometry-Based Label-Free Quantitative Proteomics , 2009, Journal of biomedicine & biotechnology.

[4]  Christian Borgs,et al.  Finding undetected protein associations in cell signaling by belief propagation , 2010, Proceedings of the National Academy of Sciences.

[5]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[6]  G. Mills,et al.  Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway , 1999, Oncogene.

[7]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[8]  C. Der,et al.  Ras history , 2010, Small GTPases.

[9]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[10]  Chao-Lan Yu,et al.  A Constitutively Active Lck Kinase Promotes Cell Proliferation and Resistance to Apoptosis through Signal Transducer and Activator of Transcription 5b Activation , 2006, Molecular Cancer Research.

[11]  M. Gerstein,et al.  Comparing protein abundance and mRNA expression levels on a genomic scale , 2003, Genome Biology.

[12]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[13]  Sridhar Ramaswamy,et al.  Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells , 2009, Cell.

[14]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[15]  J. Koziol,et al.  Label-free, normalized quantification of complex mass spectrometry data for proteomics analysis , 2009, Nature Biotechnology.

[16]  Ruedi Aebersold,et al.  Options and considerations when selecting a quantitative proteomics strategy , 2010, Nature Biotechnology.

[17]  M. Vogler,et al.  BCL2A1: the underdog in the BCL2 family , 2011, Cell Death and Differentiation.

[18]  Jeremy J. W. Chen,et al.  A five-gene signature and clinical outcome in non-small-cell lung cancer. , 2007, The New England journal of medicine.

[19]  W. Hsu,et al.  Phosphoproteomics Identifies Oncogenic Ras Signaling Targets and Their Involvement in Lung Adenocarcinomas , 2011, PloS one.

[20]  C. Paweletz,et al.  A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors , 2010, BMC Medical Genomics.

[21]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[22]  H. Daub,et al.  Quantitative phosphoproteomics – an emerging key technology in signal‐transduction research , 2008, Proteomics.

[23]  Steve Goodison,et al.  A comparative phosphoproteomic analysis of a human tumor metastasis model using a label‐free quantitative approach , 2010, Electrophoresis.

[24]  M. Wilkerson,et al.  Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. , 2010, Cancer cell.

[25]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[26]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[27]  F. Zhong,et al.  Inhibition of Lck enhances glucocorticoid sensitivity and apoptosis in lymphoid cell lines and in chronic lymphocytic leukemia , 2010, Cell Death and Differentiation.

[28]  C. Vulpe,et al.  Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins , 2008, Proteomics.

[29]  G. Baldwin,et al.  P-21 activated kinase 1 knockdown inhibits β-catenin signalling and blocks colorectal cancer growth. , 2012, Cancer letters.

[30]  N. Samatova,et al.  Detecting differential and correlated protein expression in label-free shotgun proteomics. , 2006, Journal of proteome research.

[31]  Ralph Weissleder,et al.  Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers , 2008, Nature Medicine.

[32]  Michael J. Emanuele,et al.  A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene , 2009, Cell.

[33]  Lukas N. Mueller,et al.  SuperHirn – a novel tool for high resolution LC‐MS‐based peptide/protein profiling , 2007, Proteomics.

[34]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[35]  Z. Pan,et al.  Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model , 2010, Journal of biomedicine & biotechnology.

[36]  Gerard Cagney,et al.  Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments , 2007, Briefings Bioinform..

[37]  Raj Chari,et al.  An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer , 2010, BMC Systems Biology.

[38]  F. Pontén,et al.  Correlations between RNA and protein expression profiles in 23 human cell lines , 2009, BMC Genomics.

[39]  A. Harris,et al.  Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells , 2011, Proceedings of the National Academy of Sciences.

[40]  S. R. Datta,et al.  Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. , 2002, Developmental cell.

[41]  Jae K. Lee,et al.  Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study , 2007, Molecular Cancer Therapeutics.

[42]  W. Birchmeier,et al.  Targeting MET in cancer: rationale and progress , 2012, Nature Reviews Cancer.

[43]  Lukas N. Mueller,et al.  An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. , 2008, Journal of proteome research.

[44]  Jeffrey T. Chang,et al.  A genomic strategy to elucidate modules of oncogenic pathway signaling networks. , 2009, Molecular cell.

[45]  Michael L. Gatza,et al.  A pathway-based classification of human breast cancer , 2010, Proceedings of the National Academy of Sciences.

[46]  R. Kuick,et al.  Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition. , 2009, Journal of proteome research.

[47]  Matteo Fischetti,et al.  An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem , 2006, Math. Program..

[48]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[49]  L. Trusolino,et al.  Only a subset of Met-activated pathways are required to sustain oncogene addiction. , 2009, Science signaling.

[50]  Patricia Greninger,et al.  A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. , 2009, Cancer cell.

[51]  Hyungwon Choi,et al.  Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics*S , 2008, Molecular & Cellular Proteomics.

[52]  S. Gonfloni,et al.  Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm. , 2001, European journal of biochemistry.

[53]  Ronglai Shen,et al.  Molecular Epidemiology of EGFR and KRAS Mutations in 3,026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-Related KRAS-Mutant Cancers , 2012, Clinical Cancer Research.

[54]  R. Aebersold,et al.  Quantitative analysis of protein phosphorylation on a system-wide scale by mass spectrometry-based proteomics. , 2010, Methods in enzymology.

[55]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[56]  J. Fleiss Review papers : The statistical basis of meta-analysis , 1993 .

[57]  Min Yu,et al.  TAK1 Inhibition Promotes Apoptosis in KRAS-Dependent Colon Cancers , 2012, Cell.

[58]  M. Ladanyi,et al.  Frequency and Distinctive Spectrum of KRAS Mutations in Never Smokers with Lung Adenocarcinoma , 2008, Clinical Cancer Research.

[59]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[60]  Robert A. Weinberg,et al.  Ras oncogenes: split personalities , 2008, Nature Reviews Molecular Cell Biology.

[61]  Alexey I Nesvizhskii,et al.  Abacus: A computational tool for extracting and pre‐processing spectral count data for label‐free quantitative proteomic analysis , 2011, Proteomics.

[62]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[63]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[64]  Stefan Wiemann,et al.  KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor , 2009, Bioinform..

[65]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[66]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.