Electronic relaxation rates in metallic ferromagnets
暂无分享,去创建一个
[1] M. Nicklas,et al. Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2 , 2013, Science.
[2] D. Maslov,et al. Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids , 2012, 1204.3591.
[3] H. Kotegawa,et al. Ferromagnetic Quantum Critical Endpoint in UCoAl , 2011, 1107.4590.
[4] H. Kotegawa,et al. Evolution toward Quantum Critical End Point in UGe2 , 2011, 1107.0816.
[5] R. Baumbach,et al. Quantum critical point in UCo$_{1-x}$Fe$_{x}$Ge , 2011, 1303.3228.
[6] P. Böni,et al. Inelastic neutron and x-ray scattering from incommensurate magnetic systems , 2011, 1103.0161.
[7] D. Aoki,et al. Tricritical point and wing structure in the itinerant ferromagnet UGe₂. , 2010, Physical review letters.
[8] T. R. Kirkpatrick,et al. Ordered phases of itinerant Dzyaloshinsky-Moriya magnets and their electronic properties , 2010, 1008.0134.
[9] T. R. Kirkpatrick,et al. Electronic transport at low temperatures: Diagrammatic approach , 2008, 0812.0024.
[10] T. R. Kirkpatrick,et al. Theory of helimagnons in itinerant quantum systems. IV. Transport in the weak-disorder regime , 2008, 0806.0639.
[11] T. R. Kirkpatrick,et al. Theory of helimagnons in itinerant quantum systems. III. Quasiparticle description , 2008, 0806.0614.
[12] C. Pfleiderer. On the Identification of Fermi-Liquid Behavior in Simple Transition Metal Compounds , 2007 .
[13] C. Castro,et al. Optical conductivity near finite-wavelength quantum criticality , 2006, cond-mat/0610676.
[14] T. R. Kirkpatrick,et al. Theory of helimagnons in itinerant quantum systems. II. Nonanalytic corrections to Fermi-liquid behavior , 2006, cond-mat/0604427.
[15] T. R. Kirkpatrick,et al. Theory of helimagnons in itinerant quantum systems , 2005, cond-mat/0510444.
[16] W. Pickett,et al. Implications of the B20 crystal structure for the magnetoelectronic structure of MnSi , 2004, cond-mat/0403442.
[17] K. Bennemann,et al. Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions , 2003, cond-mat/0302528.
[18] T. R. Kirkpatrick,et al. Theory of disordered itinerant ferromagnets. I. Metallic phase , 2000 .
[19] T. R. Kirkpatrick,et al. NONANALYTIC MAGNETIZATION DEPENDENCE OF THE MAGNON EFFECTIVE MASS IN ITINERANT QUANTUM FERROMAGNETS , 1998, cond-mat/9806168.
[20] G. McMullan,et al. Magnetic quantum phase transition in MnSi under hydrostatic pressure , 1997 .
[21] Himpsel. Exchange splitting of epitaxial fcc Fe/Cu(100) versus bcc Fe/Ag(100). , 1991, Physical review letters.
[22] G. Squires,et al. Small angle neutron scattering in Ni3Al , 1982 .
[23] K. Ueda. Electrical Resistivity of Antiferromagnetic Metals , 1977 .
[24] S. Ogawa. Electrical Resistivity of Weak Itinerant Ferromagnet ZrZn2 , 1976 .
[25] K. Ueda,et al. Contribution of Spin Fluctuations to the Electrical and Thermal Resistivities of Weakly and Nearly Ferromagnetic Metals , 1975 .
[26] D. J. Wallace,et al. Critical Behavior of a Classical Heisenberg Ferromagnet with Many Degrees of Freedom , 1973 .
[27] A R Plummer. Introduction to Solid State Physics , 1967 .
[28] D. A. Goodings. Electrical Resistivity of Ferromagnetic Metals at Low Temperatures , 1963 .
[29] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[30] T. Kasuya. Electrical Resistance of Ferromagnetic Metals , 1956 .
[31] P. Gombás,et al. Theory of Metals , 1946, Nature.
[32] E. C. Stoner,et al. Collective Electron Ferromagnetism , 1938 .
[33] P. Anderson. Basic Notions of Condensed Matter Physics , 1983 .
[34] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .
[35] R. Peierls. Zur Theorie der elektrischen und thermischen Leitfähigkeit von Metallen , 1930 .