Electronic relaxation rates in metallic ferromagnets

We show that the single-particle and transport relaxation rates in ferromagnetic metals, which determine the thermal and electrical conductivity, respectively, at asymptotically low temperature do not obey a power law as previously thought, but rather show an exponential temperature dependence. The reason is the splitting of the conduction band that inevitably results from a nonzero magnetization. At higher temperatures there is a sizable temperature window where the transport rate shows a T^2 temperature dependence, in accord with prior results. This window is separated from the asymptotic regime by a temperature scale that is estimated to range from tens of mK to tens of K for typical ferromagnets. We motivate and derive a very general effective theory for metallic magnets that we then use to derive these results. Comparisons with existing experiments are discussed, and predictions for future experiments at low temperatures are made.

[1]  M. Nicklas,et al.  Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2 , 2013, Science.

[2]  D. Maslov,et al.  Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids , 2012, 1204.3591.

[3]  H. Kotegawa,et al.  Ferromagnetic Quantum Critical Endpoint in UCoAl , 2011, 1107.4590.

[4]  H. Kotegawa,et al.  Evolution toward Quantum Critical End Point in UGe2 , 2011, 1107.0816.

[5]  R. Baumbach,et al.  Quantum critical point in UCo$_{1-x}$Fe$_{x}$Ge , 2011, 1303.3228.

[6]  P. Böni,et al.  Inelastic neutron and x-ray scattering from incommensurate magnetic systems , 2011, 1103.0161.

[7]  D. Aoki,et al.  Tricritical point and wing structure in the itinerant ferromagnet UGe₂. , 2010, Physical review letters.

[8]  T. R. Kirkpatrick,et al.  Ordered phases of itinerant Dzyaloshinsky-Moriya magnets and their electronic properties , 2010, 1008.0134.

[9]  T. R. Kirkpatrick,et al.  Electronic transport at low temperatures: Diagrammatic approach , 2008, 0812.0024.

[10]  T. R. Kirkpatrick,et al.  Theory of helimagnons in itinerant quantum systems. IV. Transport in the weak-disorder regime , 2008, 0806.0639.

[11]  T. R. Kirkpatrick,et al.  Theory of helimagnons in itinerant quantum systems. III. Quasiparticle description , 2008, 0806.0614.

[12]  C. Pfleiderer On the Identification of Fermi-Liquid Behavior in Simple Transition Metal Compounds , 2007 .

[13]  C. Castro,et al.  Optical conductivity near finite-wavelength quantum criticality , 2006, cond-mat/0610676.

[14]  T. R. Kirkpatrick,et al.  Theory of helimagnons in itinerant quantum systems. II. Nonanalytic corrections to Fermi-liquid behavior , 2006, cond-mat/0604427.

[15]  T. R. Kirkpatrick,et al.  Theory of helimagnons in itinerant quantum systems , 2005, cond-mat/0510444.

[16]  W. Pickett,et al.  Implications of the B20 crystal structure for the magnetoelectronic structure of MnSi , 2004, cond-mat/0403442.

[17]  K. Bennemann,et al.  Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions , 2003, cond-mat/0302528.

[18]  T. R. Kirkpatrick,et al.  Theory of disordered itinerant ferromagnets. I. Metallic phase , 2000 .

[19]  T. R. Kirkpatrick,et al.  NONANALYTIC MAGNETIZATION DEPENDENCE OF THE MAGNON EFFECTIVE MASS IN ITINERANT QUANTUM FERROMAGNETS , 1998, cond-mat/9806168.

[20]  G. McMullan,et al.  Magnetic quantum phase transition in MnSi under hydrostatic pressure , 1997 .

[21]  Himpsel Exchange splitting of epitaxial fcc Fe/Cu(100) versus bcc Fe/Ag(100). , 1991, Physical review letters.

[22]  G. Squires,et al.  Small angle neutron scattering in Ni3Al , 1982 .

[23]  K. Ueda Electrical Resistivity of Antiferromagnetic Metals , 1977 .

[24]  S. Ogawa Electrical Resistivity of Weak Itinerant Ferromagnet ZrZn2 , 1976 .

[25]  K. Ueda,et al.  Contribution of Spin Fluctuations to the Electrical and Thermal Resistivities of Weakly and Nearly Ferromagnetic Metals , 1975 .

[26]  D. J. Wallace,et al.  Critical Behavior of a Classical Heisenberg Ferromagnet with Many Degrees of Freedom , 1973 .

[27]  A R Plummer Introduction to Solid State Physics , 1967 .

[28]  D. A. Goodings Electrical Resistivity of Ferromagnetic Metals at Low Temperatures , 1963 .

[29]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[30]  T. Kasuya Electrical Resistance of Ferromagnetic Metals , 1956 .

[31]  P. Gombás,et al.  Theory of Metals , 1946, Nature.

[32]  E. C. Stoner,et al.  Collective Electron Ferromagnetism , 1938 .

[33]  P. Anderson Basic Notions of Condensed Matter Physics , 1983 .

[34]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[35]  R. Peierls Zur Theorie der elektrischen und thermischen Leitfähigkeit von Metallen , 1930 .