Rapid scalar value classification and volume clipping for interactive 3D medical image visualization

In many clinical scenarios, medical data visualization and interaction are important to physicians for exploring inner anatomical structures and extracting meaningful diagnostic information. Real-time high-quality volume rendering, artifact-free clipping, and rapid scalar value classification are important techniques employed in this process. Unfortunately, in practice, it is still difficult to achieve an optimal balance. In this paper, we present some strategies to address this issue, which are based on the calculation of segment-based post color attenuation and dynamic ray–plane intersection (RPI) respectively. When implemented within our visualization system, the new classification algorithm can deliver real-time performance while avoiding the “color over-accumulation” artifacts suffered by the commonly used acceleration algorithms that employ pre-integrated classification. Our new strategy can achieve an optimized balance between image quality and classification speed. Next, the RPI algorithm is used with opacity adjustment technique to effectively remove the “striping” artifacts on the clipping plane caused by the nonuniform integration length. Furthermore, we present techniques for multiple transfer function (TF) based anatomical feature enhancement and “keyhole” based endoscopic inner structure view. Finally, the algorithms are evaluated subjectively by radiologists and quantitatively compared using image power spectrum analysis.

[1]  A. James Stewart,et al.  Adaptive Slice Geometry for Hardware-Assisted Volume Rendering , 2005, J. Graph. Tools.

[2]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[3]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  Michael E. Goss,et al.  Opacity-weighted color interpolation for volume sampling , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[5]  Kwan-Liu Ma,et al.  High-quality lighting and efficient pre-integration for volume rendering , 2004, VISSYM'04.

[6]  Nelson L. Max,et al.  A High Accuracy Volume Renderer for Unstructured Data , 1998, IEEE Trans. Vis. Comput. Graph..

[7]  Jean-Michel Dischler,et al.  Second Order Pre-Integrated Volume Rendering , 2008, 2008 IEEE Pacific Visualization Symposium.

[8]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[9]  Yingcai Wu,et al.  Interactive Transfer Function Design Based on Editing Direct Volume Rendered Images , 2007, IEEE Transactions on Visualization and Computer Graphics.

[10]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[11]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[12]  Martin Kraus,et al.  Direct volume visualization of geometrically unpleasant meshes , 2003 .

[13]  Jens Schneider,et al.  ClearView: An Interactive Context Preserving Hotspot Visualization Technique , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Bernhard Preim,et al.  Visualization in Medicine: Theory, Algorithms, and Applications , 2007 .

[15]  Ivan Viola,et al.  Importance-driven feature enhancement in volume visualization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[16]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[17]  Andreas Pommert,et al.  Evaluation of Image Quality in Medical Volume Visualization: The State of the Art , 2002, MICCAI.

[18]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[19]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[20]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[21]  Thomas Ertl,et al.  A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[22]  U. Lang,et al.  Integrating pre-integration into the shear-warp algorithm , 2003 .

[23]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[24]  Markus Hadwiger,et al.  Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications , 2006, EuroVis.

[25]  Stefan Wolfsberger,et al.  Interactive 3 D Techniques for Computer Aided Diagnosis and Surgery Simulation Tools , 2004 .

[26]  Daniel Weiskopf,et al.  A Spectral Analysis of Function Composition and its Implications for Sampling in Direct Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Gang Sun,et al.  Interactive volume cutting of medical data , 2007, Comput. Biol. Medicine.

[28]  Kenneth Moreland,et al.  A fast high accuracy volume renderer for unstructured data , 2004, 2004 IEEE Symposium on Volume Visualization and Graphics.

[29]  Christof Rezk Salama Visual Parameters and Transfer Functions , 2009 .

[30]  Stefanie Hahmann,et al.  VisSym'03: Proceedings of the Symposium on Data Visualisation 2003 , 2003 .

[31]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[32]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[33]  Markus Hadwiger,et al.  High-Quality Multimodal Volume Rendering for Preoperative Planning of Neurosurgical Interventions , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[35]  Qi Zhang,et al.  Rapid Voxel Classification Methodology for Interactive 3D Medical Image Visualization , 2007, MICCAI.

[36]  Martin Kraus,et al.  Pre-Integrated Volume Rendering for Multi-Dimensional Transfer Functions , 2008, VG/PBG@SIGGRAPH.

[37]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[38]  Byeong-Seok Shin,et al.  Interactive classification for pre-integrated volume rendering of high-precision volume data , 2008, Graph. Model..

[39]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[40]  J Yorkston,et al.  Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology. , 1998, Medical physics.

[41]  Anders Ynnerman,et al.  Local Histograms for Design of Transfer Functions in Direct Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[42]  Robert van Liere,et al.  Trends in Interactive Visualization: State-of-the-Art Survey , 2008 .

[43]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[44]  Carla Maria Dal Sasso Freitas,et al.  Volume visualization and exploration through flexible transfer function design , 2008, Comput. Graph..

[45]  Christof Rezk Salama Volumenvisualisierung auf handelsüblicher Grafik-Hardware (Volume Rendering Techniques for General Purpose Graphics Hardware) , 2005 .

[46]  Hans Hagen,et al.  Volume Ray Casting with Peak Finding and Differential Sampling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[47]  Qi Zhang,et al.  Graphics hardware based volumetric medical dataset visualization and classification , 2006, SPIE Medical Imaging.