Single Camera Structure and Motion

A reduced order nonlinear observer is proposed for the problem of “structure and motion (SaM)” estimation of a stationary object observed by a moving calibrated camera. In comparison to existing work which requires some knowledge of the Euclidean geometry of an observed object or full knowledge of the camera motion, the developed reduced order observer only requires one camera linear velocity and corresponding acceleration to asymptotically identify the Euclidean coordinates of the feature points attached to an object (with proper scale reconstruction) and the remaining camera velocities. The unknown linear velocities are assumed to be generated using a model with unknown parameters. The unknown angular velocities are determined from a robust estimator which uses a standard Homography decomposition algorithm applied to tracked feature points. A Lyapunov analysis is provided to prove the observer asymptotically estimates the unknown states under a persistency of excitation condition.

[1]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[2]  Kiyotsugu Takaba,et al.  On the generalized algebraic Riccati equation for continuous-time descriptor systems , 1999 .

[3]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[4]  Bijoy K. Ghosh,et al.  A realization theory for perspective systems with applications to parameter estimation problems in machine vision , 1996, IEEE Trans. Autom. Control..

[5]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[6]  R. Hartley,et al.  Multiple-View Geometry under the L 1-Norm , 2007 .

[7]  Hongguo Xu On equivalence of pencils from discrete-time and continuous-time control☆ , 2006 .

[8]  B. Ghosh,et al.  A Perspective Theory for Motion and Shape Estimation in Machine Vision , 1995 .

[9]  B. Ghosh,et al.  Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer , 1995 .

[10]  Naira Hovakimyan,et al.  Fast estimation for range identification in the presence of unknown motion parameters , 2007, ICINCO-SPSMC.

[11]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[12]  Richard I. Hartley,et al.  Iterative Extensions of the Sturm/Triggs Algorithm: Convergence and Nonconvergence , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[14]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[15]  András Varga,et al.  Computation of irreducible generalized state-space realizations , 1990, Kybernetika.

[16]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[17]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[18]  Peter F. Sturm,et al.  A generic structure-from-motion framework , 2006, Comput. Vis. Image Underst..

[19]  Alessandro Astolfi,et al.  A new solution to the problem of range identification in perspective vision systems , 2005, IEEE Transactions on Automatic Control.

[20]  Giuseppe Oriolo,et al.  Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments , 2008, Int. J. Robotics Res..

[21]  Michael Schmidt,et al.  Systematic Discretization of Input/Output Maps and other Contributions to the Control of Distributed Parameter Systems , 2007 .

[22]  Warren E. Dixon,et al.  Identification of a moving object's velocity with a fixed camera , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[23]  Anders Heyden,et al.  Dynamic structure from motion based on nonlinear adaptive observers , 2008, 2008 19th International Conference on Pattern Recognition.

[24]  Timo Reis,et al.  Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..

[25]  D. Dawson,et al.  Range identification for perspective vision systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[26]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[27]  O. Dahl,et al.  Nonlinear and Adaptive Observers for Perspective Dynamic Systems , 2007, 2007 American Control Conference.

[28]  Richard I. Hartley,et al.  Multiple-View Geometry Under the {$L_\infty$}-Norm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  P. Perona,et al.  Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..

[30]  Warren E. Dixon,et al.  Lyapunov-Based Control of Robotic Systems , 2009 .

[31]  C. Desoer,et al.  Multivariable Feedback Systems , 1982 .

[32]  Richard I. Hartley,et al.  Iterative Extensions of the Sturm/Triggs Algorithm: Convergence and Nonconvergence , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  W. Rudin Principles of mathematical analysis , 1964 .

[34]  Xinkai Chen,et al.  State observer for a class of nonlinear systems and its application to machine vision , 2004, IEEE Transactions on Automatic Control.