Lasers and optics: looking towards third generation gravitational wave detectors

Third generation terrestrial interferometric gravitational wave detectors will likely require significant advances in laser and optical technologies to reduce two of the main limiting noise sources: thermal noise due to mirror coatings and quantum noise arising from a combination of shot noise and radiation pressure noise. Increases in laser power and possible changes of the operational wavelength require new high power laser sources and new electro-optic modulators and Faraday isolators. Squeezed light can be used to further reduce the quantum noise while nano-structured optical components can be used to reduce or eliminate mirror coating thermal noise as well as to implement all-reflective interferometer configurations to avoid thermal effects in mirror substrates. This paper is intended to give an overview on the current state-of-the-art and future trends in these areas of ongoing research and development.

[1]  P. Sen,et al.  Studies on codoping behavior of Nd:Mg:LiNbO3 crystals , 2007 .

[2]  O. Burmeister,et al.  High reflectivity grating waveguide coatings for 1064 nm , 2006, gr-qc/0608006.

[3]  D. Kracht,et al.  Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power. , 2005, Optics express.

[4]  Heinz P. Weber,et al.  The effective absorption coefficient in double-clad fibres , 1993 .

[5]  A. A. Friesem,et al.  Resonant grating–waveguide structures for visible and near-infrared radiation , 1997 .

[6]  Robert Gerson,et al.  Increased optical damage resistance in lithium niobate , 1984 .

[7]  Robert L. Byer,et al.  Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers , 1983 .

[8]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[9]  David E. McClelland,et al.  Optimization and transfer of vacuum squeezing from an optical parametric oscillator , 1999 .

[10]  K. Kato,et al.  Sellmeier and thermo-optic dispersion formulas for RbTiOPO4 , 2009, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[11]  R. DeSalvo,et al.  Proposal for lower frequency companions for the advanced LIGO Gravitational Wave Interferometric Detectors , 2004 .

[12]  M. Punturo,et al.  Challenges in thermal noise for 3rd generation of gravitational wave detectors , 2011 .

[13]  M. Aguiló,et al.  Structural and optical properties of RbTiOPO4:Nb crystals , 2007 .

[14]  O Burmeister,et al.  Input-output relations for a three-port grating coupled Fabry-Perot cavity. , 2005, Optics letters.

[15]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[16]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[17]  Helena Armandula,et al.  Thermal noise from optical coatings in gravitational wave detectors. , 2006, Applied optics.

[18]  David H. Reitze,et al.  Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators , 2000 .

[19]  Ady Arie,et al.  Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4. , 2003, Applied optics.

[20]  R L Byer,et al.  Yb:YAG and Nd:YAG edge-pumped slab lasers. , 2001, Optics letters.

[21]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[22]  Benno Willke,et al.  Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. , 2006, Optics express.

[23]  A.K. Poteomkin,et al.  Compensation of thermally induced modal distortions in Faraday isolators , 2004, IEEE Journal of Quantum Electronics.

[24]  D.S. Zheleznov,et al.  Faraday Rotators With Short Magneto-Optical Elements for 50-kW Laser Power , 2007, IEEE Journal of Quantum Electronics.

[25]  Astronomy,et al.  Coupling of lateral grating displacement to the output ports of a diffractive Fabry-Perot cavity , 2009, 0903.3324.

[26]  G. Gurzadyan,et al.  Handbook of nonlinear optical crystals , 1991 .

[27]  Robert L. Byer,et al.  CW high-power conduction-cooled edge-pumped slab laser , 1999, Photonics West.

[28]  R L Byer,et al.  All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters. , 1998, Optics letters.

[29]  J. Gavaldà,et al.  Growth and characterisation of RbTiOPO4:Nb crystals as a host for rare earth ions , 2001 .

[30]  Gustafson,et al.  Sagnac interferometer for gravitational-wave detection. , 1996, Physical review letters.

[31]  P. Kryukov V G Dmitriev, G G Gurzadyan, D N Nikogosyan ' Handbook of Nonlinear Optical Crystals 2nd revised and updated edition' (Berlin: Springer, 1997) , 1997 .

[32]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[33]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[34]  A. Tünnermann,et al.  Optical characterization of ultrahigh diffraction efficiency gratings. , 2006, Applied optics.

[35]  Ady Arie,et al.  Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4 , 2004 .

[36]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[37]  Karsten Danzmann,et al.  Observation of squeezed light with 10-dB quantum-noise reduction. , 2007, Physical review letters.

[38]  Karsten Danzmann,et al.  Coherent control of broadband vacuum squeezing , 2007, 0704.3796.

[39]  E. Khazanov,et al.  2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers , 2009 .

[40]  J. L. Dexter,et al.  Ultraviolet optical isolators utilizing KDP-isomorphs , 1990 .

[41]  Y. Fujimoto,et al.  Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. , 2007, Optics express.

[42]  A. Tünnermann,et al.  Demonstration of a cavity coupler based on a resonant waveguide grating. , 2009, Optics express.

[43]  Y. Jeong,et al.  Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. , 2004, Optics express.

[44]  S. P. Vyatchanin,et al.  Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae , 2004 .

[45]  Ivan B. Mukhin,et al.  LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Use of thin discs in Faraday isolators for high-average-power lasers , 2004 .

[46]  Sunao Kurimura,et al.  Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate. , 2008, Optics express.

[47]  K. Danzmann,et al.  Shot-noise-limited laser power stabilization with a high-power photodiode array. , 2009, Optics letters.

[48]  R. A. Lieberman,et al.  Broadband magneto‐optic waveguide isolator , 1990 .

[49]  T. Loretz,et al.  The Faraday effect in some non-crystalline fluorides , 1983 .

[50]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[51]  A. Tünnermann,et al.  Low-loss grating for coupling to a high-finesse cavity. , 2004, Optics letters.

[52]  R. Schnabel,et al.  Phase and alignment noise in grating interferometers , 2007, 0711.0291.

[53]  P. Wessels,et al.  Stabilized lasers for advanced gravitational wave detectors , 2008 .

[54]  Karsten Danzmann,et al.  Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.

[55]  Wanduo Wu Instrumentation of the next generation gravitational wave detector: Triple pendulum suspension and electro-optic modulator , 2007 .

[56]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[57]  D. McClelland,et al.  Coating-free mirrors for high precision interferometric experiments , 2007 .

[58]  R. Schnabel,et al.  Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors , 2003, gr-qc/0303066.

[59]  Measurement of the total absorption coefficient of a KTP crystal , 1990 .

[60]  R. Schnabel,et al.  Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.

[61]  E. Khazanov,et al.  Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K , 2006 .

[62]  J. Limpert,et al.  The Rising Power of Fiber Lasers and Amplifiers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  A. Boccara,et al.  In-vacuum optical isolation changes by heating in a Faraday isolator. , 2008, Applied optics.

[64]  G. K. Samanta,et al.  Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm. , 2009, Optics Letters.

[65]  Yu.S. Oseledchik,et al.  Nonlinear optical properties of the flux grown RbTiOPO4 crystal , 1994 .

[66]  A. Tünnermann,et al.  Diffractive beam splitter characterization via a power-recycled interferometer. , 2008, Optics letters.

[67]  Roman Schnabel Gravitational wave detectors: Squeezing up the sensitivity , 2008 .

[68]  S. Reynaud,et al.  Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.

[69]  R. Wolfe,et al.  Epitaxial Garnet Films for Nonreciprocal Magneto-Optic Devices , 2000 .

[70]  A. Tünnermann,et al.  Demonstration of three-port grating phase relations. , 2006, Optics letters.

[71]  K. Tsushima,et al.  Magneto-Optical Properties of (GdBi)3(FeAl)5O12 Bulk Single Crystals and Their Application to a 1.3 μm Optical Isolator , 1987, IEEE Translation Journal on Magnetics in Japan.

[72]  孝彦 玉城,et al.  GdBi)3(FeAl)5O12バルク単結晶の磁気光学特性と1.3μm用光アイソレータへの応用 , 1986 .

[73]  A. Tünnermann,et al.  Monolithic dielectric surfaces as new low-loss light-matter interfaces. , 2008, Optics letters.

[74]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[75]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .

[76]  P. Knight,et al.  Introductory Quantum Optics: Frontmatter , 2004 .

[77]  M. Beck Introductory Quantum Optics , 2005 .

[78]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[79]  Quantum noise locking , 2005, quant-ph/0505164.

[80]  M. Huang,et al.  Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications , 2005 .

[81]  Andreas Freise,et al.  Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors , 2009, 0901.4931.

[82]  G. Mueller,et al.  Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers , 2002 .

[83]  Shigeki Tokita,et al.  Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers , 2005 .

[84]  Juri Agresti,et al.  Optimized multilayer dielectric mirror coatings for gravitational wave interferometers , 2006, SPIE Optics + Photonics.

[85]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .