Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

In this paper, a simple and effective tool for the design of low-density parity-check (LDPC) codes for iterative correction of bursts of erasures is presented. The design method consists of starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance over the memoryless erasure channel, and suitable also for the iterative correction of single erasure bursts. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PSS) algorithm. It executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed to achieve a good performance over the memoryless erasure channel, then the code obtained after the application of the algorithm provides a good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the algorithm effectiveness when applied to different categories of LDPC codes.

[1]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[2]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[3]  Marc P. C. Fossorier Universal Burst Error Correction , 2006, 2006 IEEE International Symposium on Information Theory.

[4]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[5]  Stephen Bates,et al.  Construction of low-density parity-check convolutional codes through progressive edge-growth , 2005, IEEE Communications Letters.

[6]  Dariush Divsalar,et al.  Protograph based LDPC codes with minimum distance linearly growing with block size , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[7]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[8]  W.E. Ryan,et al.  Performance of efficiently encodable low-density parity-check codes in noise bursts on the EPR4 channel , 2004, IEEE Transactions on Magnetics.

[9]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[10]  S. Dolinar,et al.  Protograph LDPC Codes over Burst Erasure Channels , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[11]  Marco Chiani,et al.  Channel Coding for Future Space Missions: New Requirements and Trends , 2007, Proceedings of the IEEE.

[12]  Dariush Divsalar,et al.  Low-rate LDPC codes with simple protograph structure , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Tadashi Wadayama Ensemble Analysis on Minimum Span of Stopping Sets , 2006 .

[14]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[15]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[16]  Fei Peng,et al.  Simplified eIRA code design and performance analysis for correlated Rayleigh fading channels , 2006, IEEE Transactions on Wireless Communications.

[17]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[18]  Marco Chiani,et al.  Long Erasure Correcting Codes: the New Frontier for Zero Loss in Space Applications? , 2006 .

[19]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[20]  Khaled A. S. Abdel-Ghaffar,et al.  Algebraic Construction of Quasi-cyclic LDPC Codes - Part II: For AWGN and Binary Random and Burst Erasure Channels , 2006, AAECC.

[21]  Marco Chiani,et al.  Simple reconfigurable low-density parity-check codes , 2005, IEEE Communications Letters.

[22]  Khaled A. S. Abdel-Ghaffar,et al.  Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels , 2006, IEEE Transactions on Communications.

[23]  Marco Chiani,et al.  Improved Low-Density Parity-Check Codes for Burst Erasure Channels , 2006, 2006 IEEE International Conference on Communications.

[24]  Hua Xiao,et al.  Improved progressive-edge-growth (PEG) construction of irregular LDPC codes , 2004, IEEE Communications Letters.

[25]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[26]  Sarah J. Johnson,et al.  LDPC Codes For The Classic Bursty Channel , 2004 .

[27]  Shigeichi Hirasawa,et al.  Performance of Low-Density Parity-Check Codes for Burst Erasure Channels , 2006 .

[28]  William E. Ryan,et al.  Structured eIRA codes with low floors , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[29]  Shigeichi Hirasawa,et al.  A Modification Method for Constructing Low-Density Parity-Check Codes for Burst Erasures , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[30]  Yu Kou,et al.  On a class of finite geometry low density parity check codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[31]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.