Covariant momentum map thermodynamics for parametrized field theories

A general-covariant statistical framework capable of describing classical fluctuations of the gravitational field is a thorny open problem in theoretical physics, yet ultimately necessary to understand the nature of the gravitational interaction and a key to quantum gravity. Inspired by Souriau's symplectic generalization of the Maxwell-Boltzmann-Gibbs equilibrium in Lie group thermodynamics, we investigate a spacetime-covariant formulation of statistical mechanics for parametrized first-order field theories, as a simplified model sharing essential general covariant features with canonical general relativity. Starting from a covariant multi-symplectic phase space formulation, we define a general-covariant notion of Gibbs state in terms of the covariant momentum map associated with the lifted action of the diffeomorphisms group on the extended phase space. We show how such a covariant notion of equilibrium encodes the whole information about symmetry, gauge and dynamics carried by the theory, associated to a canonical spacetime foliation, where the covariant choice of a reference frame reflects in a Lie algebra-valued notion of local temperature. We investigate how physical equilibrium, hence time evolution, emerges from such a state and the role of the gauge symmetry in the thermodynamic description.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Paul Adrien Maurice Dirac,et al.  The Hamiltonian Form of Field Dynamics , 1951, Canadian Journal of Mathematics.

[3]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[4]  Paul Adrien Maurice Dirac,et al.  The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  In Gravitation: an introduction to current research , 1962 .

[6]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[7]  Peter G. Bergmann,et al.  Principles of Relativity Physics , 1967 .

[8]  K. Kuchař Canonical Quantization of Gravity , 1973 .

[9]  K. Kuchař Geometrodynamics regained - a lagrangian approach , 1974 .

[10]  J. Marsden,et al.  The initial value problem and the dynamical formulation of general relativity , 1979 .

[11]  Heat, Cold and Geometry , 1983 .

[12]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[13]  C. Isham,et al.  Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories , 1985 .

[14]  K. Kuchař Canonical Quantization of Generally Covariant Systems , 1988 .

[15]  D. Saunders The Geometry of Jet Bundles , 1989 .

[16]  Rovelli,et al.  Time in quantum gravity: An hypothesis. , 1991, Physical review. D, Particles and fields.

[17]  M. Crampin,et al.  On the multisymplectic formalism for first order field theories , 1991 .

[18]  On Dirac's methods for constrained systems and gauge-fixing conditions with explicit time dependence , 1991 .

[19]  C. Torre Covariant Phase Space Formulation of Parametrized Field Theories , 1992, hep-th/9204055.

[20]  R. Haag,et al.  Local quantum physics , 1992 .

[21]  Torre Is general relativity an "already parametrized" theory? , 1992, Physical review. D, Particles and fields.

[22]  Marc Henneaux,et al.  Quantization of Gauge Systems , 1992 .

[23]  C.J.Isham Prima Facie Questions in Quantum Gravity , 1993, gr-qc/9310031.

[24]  C. Isham Prima Facie Questions in Quantum Gravity , 1993 .

[25]  A GEOMETRICAL APPROACH TO TIME-DEPENDENT GAUGE-FIXING , 1992, hep-th/9208009.

[26]  C. Rovelli Statistical mechanics of gravity and the thermodynamical origin of time , 1993 .

[27]  G. Sardanashvily MULTIMOMEMTUM HAMILTONIAN FORMALISM IN FIELD THEORY , 1994 .

[28]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[29]  Geometry and Dynamics with Time-Dependent Constraints , 1994, hep-th/9408055.

[30]  A. Connes,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories , 1994, gr-qc/9406019.

[31]  G. Sardanashvily Multimomentum hamiltonian formalism in quantum field theory , 1994 .

[32]  G. Sardanashvily Multimomentum Hamiltonian Formalism , 1994 .

[33]  Evolutionary laws, initial conditions and gauge fixing in constrained systems , 1995, gr-qc/9508052.

[34]  Space-time covariant form of Ashtekar’s constraints , 1995, gr-qc/9506008.

[35]  P. Hajicek,et al.  The symplectic geometry of a parametrized scalar field on a curved background , 1995, gr-qc/9510028.

[36]  Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories , 1996, gr-qc/9612037.

[37]  Jerrold E. Marsden,et al.  Momentum maps and classical relativistic fields. Part 1: Covariant Field Theory , 1998, physics/9801019.

[38]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[39]  Multivector field formulation of Hamiltonian field theories: equations and symmetries , 1999, math-ph/9907007.

[40]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[41]  M. Mu,et al.  MULTIVECTOR FIELD FORMULATION OF HAMILTONIAN FIELD THEORIES: EQUATIONS AND SYMMETRIES , 1999 .

[42]  Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance , 1999, gr-qc/9910079.

[43]  Partial observables , 2001, gr-qc/0110035.

[44]  C. Rovelli,et al.  Statistical mechanics of generally covariant quantum theories: A Boltzmann-like approach , 2000, gr-qc/0002024.

[45]  C. Rovelli A note on the foundation of relativistic mechanics. II: Covariant hamiltonian general relativity , 2001, gr-qc/0202079.

[46]  C. Rovelli A note on the foundation of relativistic mechanics. I: Relativistic observables and relativistic states , 2001, gr-qc/0111037.

[47]  Fr'ed'eric H'elein,et al.  Finite dimensional Hamiltonian formalism for gauge and quantum field theories , 2000, math-ph/0010036.

[48]  Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl , 2004, math-ph/0401046.

[49]  M. Henneaux,et al.  Hamiltonian analysis of Plebanski theory , 2004 .

[50]  Covariant Hamiltonian formalism for the calculus of variations with several variables , 2002, math-ph/0401047.

[51]  R. Arnowitt,et al.  Republication of: The dynamics of general relativity , 2004 .

[52]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[53]  T. P. Singh STRING THEORY, QUANTUM MECHANICS AND NONCOMMUTATIVE GEOMETRY: A NEW PERSPECTIVE ON THE GRAVITATIONAL DYNAMICS OF D0-BRANES , 2006, hep-th/0605112.

[54]  T. Thiemann Modern Canonical Quantum General Relativity , 2007 .

[55]  J. Marsden,et al.  Parametrization and stress–energy–momentum tensors in metric field theories , 2007, 0712.1883.

[56]  F. Hélein Variational Problems in Differential Geometry: Multisymplectic formalism and the covariant phase space , 2009 .

[57]  Hyun Seok Yang Emergent spacetime and the origin of gravity , 2008, 0809.4728.

[58]  M. J. Gotay,et al.  Covariantizing Classical Field Theories , 2010, 1008.3170.

[59]  C. Stivers Class , 2010 .

[60]  C. Rovelli,et al.  Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’ , 2010, 1005.2985.

[61]  Mark Van Raamsdonk Building up spacetime with quantum entanglement , 2010 .

[62]  F. Hy Multisymplectic formalism and the covariant phase space , 2012 .

[63]  Carlo Rovelli,et al.  Death and resurrection of the zeroth principle of thermodynamics , 2013, 1302.0724.

[64]  Hal M. Haggard,et al.  Coupling and thermal equilibrium in general-covariant systems , 2013, 1309.0777.

[65]  D. Oriti Group field theory as the second quantization of loop quantum gravity , 2013, 1310.7786.

[66]  C. Rovelli General relativistic statistical mechanics , 2012, 1209.0065.

[67]  D. Giulini Dynamical and Hamiltonian formulation of General Relativity , 2015, 1505.01403.

[68]  M. Raamsdonk,et al.  Universality of Gravity from Entanglement , 2014, 1405.2933.

[69]  José A. Zapata,et al.  Multisymplectic effective general boundary field theory , 2013, 1312.3220.

[70]  D. Vey Multisymplectic formulation of vielbein gravity: I. De Donder–Weyl formulation, Hamiltonian (n − 1)-forms , 2014, 1404.3546.

[71]  S. Meyer 1922: Principles of Relativity , 2015 .

[72]  J. Jurkiewicz,et al.  Wilson loops in nonperturbative quantum gravity , 2015, 1504.01065.

[73]  C. Rovelli,et al.  Statistical mechanics of reparametrization-invariant systems. It takes three to tango. , 2015, 1503.08725.

[74]  Alberto Ibort,et al.  Covariant Hamiltonian first order field theories with constraints on manifolds with boundary: the case of Hamiltonian dynamics , 2015, 1511.03302.

[75]  Charles-Michel Marle,et al.  From Tools in Symplectic and Poisson Geometry to J.-M. Souriau's Theories of Statistical Mechanics and Thermodynamics , 2016, Entropy.

[76]  M. Bojowald,et al.  Hypersurface-deformation algebroids and effective spacetime models , 2016, 1610.08355.

[77]  Shun-ichi Amari,et al.  Information Geometry and Its Applications , 2016 .

[78]  Frédéric Barbaresco,et al.  Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families , 2016, Entropy.

[79]  William Donnelly,et al.  Local subsystems in gauge theory and gravity , 2016, 1601.04744.

[80]  Alberto Ibort,et al.  On A Covariant Hamiltonian Description of Palatini's Gravity on Manifolds with Boundary , 2016, 1605.03492.

[81]  F. P. Zen,et al.  Statistical discrete geometry , 2016, 1607.08629.

[82]  H. Stoecker,et al.  Canonical transformation path to gauge theories of gravity-II: Space-time coupling of spin-0 and spin-1 particle fields , 2017, International Journal of Modern Physics E.

[83]  N. Román-Roy,et al.  Multisymplectic unified formalism for Einstein-Hilbert gravity , 2017, 1705.00569.

[84]  W. Wieland Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum , 2017, 1706.00479.

[85]  Loop gravity string , 2016, 1611.03668.

[86]  M. Asorey,et al.  Admissible boundary conditions for Hamiltonian field theories , 2017 .

[87]  D. Oriti,et al.  Statistical equilibrium in quantum gravity: Gibbs states in group field theory , 2018, New Journal of Physics.

[88]  G. Chirco,et al.  Statistical Mechanics of Covariant Systems with Multi-fingered Time , 2016, Foundations of Physics.

[89]  Михаил Васильевич Бабич,et al.  Antiquantization, isomonodromy, and integrability: Dedicated to the memory of Ludwig Faddeev , 2018 .

[90]  Goffredo Chirco,et al.  Generalized Gibbs Ensembles in Discrete Quantum Gravity , 2019, GSI.

[91]  Frédéric Barbaresco,et al.  Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups , 2019, GSI.

[92]  D. Oriti,et al.  Statistical equilibrium of tetrahedra from maximum entropy principle , 2018, Physical Review D.

[93]  Isha Kotecha Thermal Quantum Spacetime , 2019, Universe.

[94]  W. Wieland Generating functional for gravitational null initial data , 2019, Classical and Quantum Gravity.

[95]  E. Livine,et al.  Gravitational edge modes: from Kac–Moody charges to Poincaré networks , 2019, Classical and Quantum Gravity.

[96]  Heat , 2020 .

[97]  E. Livine,et al.  Kinematical gravitational charge algebra , 2019, Physical Review D.

[98]  P. Alam ‘K’ , 2021, Composites Engineering.

[99]  S. Amari Information geometry , 2021, Japanese Journal of Mathematics.