Modeling and optimization of solar thermoelectric generators for terrestrial applications

Abstract In this paper we introduce a model and an optimization methodology for terrestrial solar thermoelectric generators (STEGs). We describe, discuss, and justify the necessary constraints on the STEG geometry that make the STEG optimization independent of individual dimensions. A simplified model shows that the thermoelectric elements in STEGs can be scaled in size without affecting the overall performance of the device, even when the properties of the thermoelectric material and the solar absorber are temperature-dependent. Consequently, the amount of thermoelectric material can be minimized to be only a negligible fraction of the total system cost. As an example, a Bi 2 Te 3 -based STEG is optimized for rooftop power generation. Peak efficiency is predicted to be 5% at the standard spectrum AM1.5G, with the thermoelectric material cost below 0.05 $/W p . Integrating STEGs into solar hot water systems for cogeneration adds electricity at minimal extra cost. In such cogeneration systems the electric current can be adjusted throughout the day to favor either electricity or hot water production.

[1]  Jincan Chen Thermodynamic analysis of a solar‐driven thermoelectric generator , 1996 .

[2]  Timothy P. Hogan,et al.  Modeling and Characterization of Power Generation Modules Based on Bulk Materials , 2006 .

[3]  E. Wäckelgård,et al.  Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors , 2000 .

[4]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[5]  Kyeongjae Cho,et al.  Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization , 2010 .

[6]  H. Scherrer,et al.  Solar thermolectric generator based on skutterudites , 2003 .

[7]  M. M. Kaila,et al.  Solar thermoelectric generation using bismuth telluride alloys , 1980 .

[8]  N. Fuschillo,et al.  Solar thermoelectric generator for near-earth space applications , 1966 .

[9]  Richard Buist Calculation of Peltier Device Performance , 1995 .

[10]  Juma Yousuf Alaydi,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[11]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[12]  David Michael Rowe,et al.  A high performance solar powered thermoelectric generator , 1981 .

[13]  Joseph Khedari,et al.  Design and analysis of solar thermoelectric power generation system , 2005 .

[14]  M. Modest Radiative heat transfer , 1993 .

[15]  Cole Boulevard,et al.  Review of Mid- to High- Temperature Solar Selective Absorber Materials , 2002 .

[16]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[17]  C. Domenicali,et al.  Irreversible Thermodynamics of Thermoelectric Effects in Inhomogeneous, Anisotropic Media , 1953 .

[18]  Peng Li,et al.  Design of a Concentration Solar Thermoelectric Generator , 2010 .

[19]  Luciana W. da Silva,et al.  Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport , 2004 .

[20]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[21]  Maria Telkes,et al.  Solar Thermoelectric Generators , 1954 .

[22]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[23]  Gunter Rockendorf,et al.  PV-hybrid and thermoelectric collectors , 1999 .

[24]  Matteo Chiesa,et al.  Photovoltaic-thermoelectric hybrid systems: A general optimization methodology , 2008 .

[25]  Gang Chen,et al.  Theoretical efficiency of solar thermoelectric energy generators , 2011 .

[26]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.