A short introduction to Anderson localization

We give short introduction to some aspects of the theory of Anderson localization.

[1]  Fluctuation based proof of the stability of ac spectra of random operators on tree graphs , 2005, math-ph/0510069.

[2]  S. A. Molčanov,et al.  The local structure of the spectrum of the one-dimensional Schrödinger operator , 1981 .

[3]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[4]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[5]  B. Simon Absence of ballistic motion , 1990 .

[6]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[7]  Israel Michael Sigal,et al.  The quantum N-body problem , 2000 .

[8]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[9]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[10]  P. Marko,et al.  ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES , 2008 .

[11]  L. Pastur Spectral properties of disordered systems in the one-body approximation , 1980 .

[12]  E. Lieb A refinement of Simon's correlation inequality , 1980 .

[13]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[14]  Werner Kirsch,et al.  Random Schrödinger operators a course , 1989 .

[15]  Simón,et al.  What is localization? , 1995, Physical review letters.

[16]  F. Martinelli,et al.  Remark on the absence of absolutely continuous spectrum ford-dimensional Schrödinger operators with random potential for large disorder or low energy , 1985 .

[17]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[18]  L. Miglio Introduction to the theory of disordered systems , 1989 .

[19]  Michael Aizenman,et al.  Moment analysis for localization in random Schrödinger operators , 2003, math-ph/0308023.

[20]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[21]  A. Klein Extended States in the Anderson Model on the Bethe Lattice , 1998 .

[22]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[23]  Barry Simon,et al.  Correlation inequalities and the decay of correlations in ferromagnets , 1980 .

[24]  A. Klein,et al.  A characterization of the Anderson metal-insulator transport transition , 2004 .

[25]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[26]  Dirk Hundertmark,et al.  On the Time – Dependent Approach to Anderson Localization , 2000 .

[27]  Localization bounds for an electron gas , 1996, cond-mat/9603116.

[28]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[29]  B. Simon,et al.  Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .

[30]  H. Poincaré,et al.  Percolation ? , 1982 .

[31]  D. Hasler,et al.  Absolutely Continuous Spectrum for the Anderson Model on a Tree: A Geometric Proof of Klein’s Theorem , 2005, math-ph/0511050.

[32]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[33]  Werner Kirsch,et al.  The Integrated Density of States for Random Schroedinger Operators , 2006 .

[34]  J. Bourgain,et al.  On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .

[35]  M. Aizenman,et al.  Constructive fractional-moment criteria for localization in random operators , 2000 .

[36]  J. Hammersley Percolation Processes: Lower Bounds for the Critical Probability , 1957 .