Practical Algorithms of Spectral Clustering: Toward Large-Scale Vision-Based Motion Analysis

This chapter presents some practical algorithms of spectral clustering for large-scale data. Spectral clustering is a kernel-based method of grouping data on separate nonlinear manifolds. Reducing its computational expense without critical loss of accuracy contributes to its practical use especially in vision-based applications. The present algorithms exploit random projection and subsampling techniques for reducing dimensionality and the cost for evaluating pairwise similarities of data. The computation time is quasilinear with respect to the data cardinality, and it can be independent of data dimensionality in some appearance-based applications. The efficiency of the algorithms is demonstrated in appearance-based image/video segmentation.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[3]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[4]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[5]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[8]  Tomoya Sakai Monte Carlo subspace method: An incremental approach to high-dimensional data classification , 2008, 2008 19th International Conference on Pattern Recognition.

[9]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[10]  Kenta Sasaki,et al.  PRMU Algorithm Contest 2006 : "Shot Boundary Detection from Image Sequence" Summary Report and Prize Winning Algorithms , 2006 .

[11]  Gary Marchionini,et al.  Open video: A framework for a test collection , 2000, J. Netw. Comput. Appl..

[12]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[13]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[14]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[15]  Dmitriy Fradkin,et al.  Experiments with random projections for machine learning , 2003, KDD '03.

[16]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[20]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Guy L. Scott,et al.  Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.

[22]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[23]  Michael W. Berry,et al.  Large-Scale Sparse Singular Value Computations , 1992 .

[24]  Norbert Brändle,et al.  Evaluation of clustering methods for finding dominant optical flow fields in crowded scenes , 2008, 2008 19th International Conference on Pattern Recognition.

[25]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[26]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[27]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[28]  Nando de Freitas,et al.  Fast Krylov Methods for N-Body Learning , 2005, NIPS.

[29]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Sridhar Mahadevan Fast Spectral Learning using Lanczos Eigenspace Projections , 2008, AAAI.

[31]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Edward Y. Chang,et al.  Parallel Spectral Clustering , 2008, ECML/PKDD.

[33]  James T. Kwok,et al.  Density-Weighted Nystrm Method for Computing Large Kernel Eigensystems , 2009, Neural Computation.