Directed Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label Orderings

Label ordering, the specification of subset–superset relationships for segmentation labels, has been of increasing interest in image segmentation as they allow for complex regions to be represented as a collection of simple parts. Recent advances in continuous max-flow segmentation have widely expanded the possible label orderings from binary background/foreground problems to extendable frameworks in which the label ordering can be specified. This article presents Directed Acyclic Graph Max-Flow image segmentation which is flexible enough to incorporate any label ordering without constraints. This framework uses augmented Lagrangian multipliers and primal–dual optimization to develop a highly parallelized solver implemented using GPGPU. This framework is validated on synthetic, natural, and medical images illustrating its general applicability.

[1]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[2]  Xue-Cheng Tai,et al.  A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[3]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[4]  Yuri Boykov,et al.  Globally optimal segmentation of multi-region objects , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Olga Veksler,et al.  Star Shape Prior for Graph-Cut Image Segmentation , 2008, ECCV.

[6]  Terry M. Peters,et al.  Shape complexes in continuous max-flow segmentation , 2016, SPIE Medical Imaging.

[7]  Xianyu Su,et al.  Reliability-guided phase unwrapping algorithm: a review ☆ , 2004 .

[8]  Terry M. Peters,et al.  Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling , 2016, Medical Image Anal..

[9]  Xue-Cheng Tai,et al.  A study on continuous max-flow and min-cut approaches , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Christian Denk,et al.  Susceptibility weighted imaging with multiple echoes , 2010, Journal of magnetic resonance imaging : JMRI.

[13]  Y. Censor,et al.  Proximal Minimization Algorithm with D-Functions 1'2 , 1992 .

[14]  Xue-Cheng Tai,et al.  Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts , 2015, EMMCVPR.

[15]  Lena Gorelick,et al.  Minimizing Energies with Hierarchical Costs , 2012, International Journal of Computer Vision.

[16]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[17]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[18]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[19]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[20]  Xue-Cheng Tai,et al.  A Continuous Max-Flow Approach to Potts Model , 2010, ECCV.

[21]  Andrew Blake,et al.  Geodesic star convexity for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[23]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[24]  Alain Billionnet,et al.  Maximizing a supermodular pseudoboolean function: A polynomial algorithm for supermodular cubic functions , 1985, Discret. Appl. Math..

[25]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[26]  Terry M. Peters,et al.  Interactive Hierarchical-Flow Segmentation of Scar Tissue From Late-Enhancement Cardiac MR Images , 2014, IEEE Transactions on Medical Imaging.

[27]  D. Schlesinger,et al.  TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .

[28]  Aaron Fenster,et al.  Globally optimal co-segmentation of three-dimensional pulmonary 1H and hyperpolarized 3He MRI with spatial consistence prior , 2015, Medical Image Anal..

[29]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[30]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Daniel Rueckert,et al.  Multi-atlas Segmentation as a Graph Labelling Problem: Application to Partially Annotated Atlas Data , 2015, IPMI.

[32]  Honglak Lee,et al.  A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  Alexei A. Efros,et al.  Recovering Surface Layout from an Image , 2007, International Journal of Computer Vision.

[34]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Chandrasekharan Kesavadas,et al.  Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review , 2008, Neuroradiology.

[36]  Young Soo Kim,et al.  Co-segmentation of inter-subject brain magnetic resonance images , 2014, 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[37]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[38]  Wiro J. Niessen,et al.  Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts , 2008, NeuroImage.

[39]  Terry M. Peters,et al.  A Continuous Max-Flow Approach to General Hierarchical Multi-Labelling Problems , 2014, ArXiv.

[40]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[41]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[43]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.