Decorrelation and efficient coding by retinal ganglion cells

An influential theory of visual processing asserts that retinal center-surround receptive fields remove spatial correlations in the visual world, producing ganglion cell spike trains that are less redundant than the corresponding image pixels. For bright, high-contrast images, this decorrelation would enhance coding efficiency in optic nerve fibers of limited capacity. We tested the central prediction of the theory and found that the spike trains of retinal ganglion cells were indeed decorrelated compared with the visual input. However, most of the decorrelation was accomplished not by the receptive fields, but by nonlinear processing in the retina. We found that a steep response threshold enhanced efficient coding by noisy spike trains and that the effect of this nonlinearity was near optimal in both salamander and macaque retina. These results offer an explanation for the sparseness of retinal spike trains and highlight the importance of treating the full nonlinear character of neural codes.

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  H. O. Lancaster Some properties of the bivariate normal distribution considered in the form of a contingency table , 1957 .

[3]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[4]  W. Levick Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina , 1967, The Journal of physiology.

[5]  R. Stein,et al.  The information capacity of nerve cells using a frequency code. , 1967, Biophysical journal.

[6]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[7]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[8]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[10]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[12]  S. Shamai,et al.  Capacity of a pulse amplitude modulated direct detection photon channel , 1990 .

[13]  J. V. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[14]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[15]  J. V. van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[16]  K. Purpura,et al.  Response variability in retinal ganglion cells of primates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Joseph J. Atick,et al.  Convergent Algorithm for Sensory Receptive Field Development , 1993, Neural Computation.

[18]  Markus Meister,et al.  Multi-neuronal signals from the retina: acquisition and analysis , 1994, Journal of Neuroscience Methods.

[19]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[20]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[21]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[22]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[23]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[24]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[26]  Iman H. Brivanlou,et al.  Mechanisms of Concerted Firing among Retinal Ganglion Cells , 1998, Neuron.

[27]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[28]  Carl van Vreeswijk Whence Sparseness? , 2000, NIPS.

[29]  L. Lagnado,et al.  Synaptic Depression and the Kinetics of Exocytosis in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[30]  Pamela Reinagel How do visual neurons respond in the real world? , 2001, Current Opinion in Neurobiology.

[31]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[32]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[33]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[34]  Michael J. Berry,et al.  A test of metabolically efficient coding in the retina , 2002, Network.

[35]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[36]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[37]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[38]  Maria V. Sanchez-Vives,et al.  Adaptation and temporal decorrelation by single neurons in the primary visual cortex. , 2003, Journal of neurophysiology.

[39]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[40]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[41]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[42]  E. Chichilnisky,et al.  Precision of spike trains in primate retinal ganglion cells. , 2004, Journal of neurophysiology.

[43]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[44]  Michele Rucci,et al.  Fixational instability and natural image statistics: Implications for early visual representations , 2005, Network.

[45]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[46]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[47]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[48]  Michael J. Berry,et al.  Functional organization of ganglion cells in the salamander retina. , 2006, Journal of neurophysiology.

[49]  D. Ringach,et al.  The Operating Point of the Cortex: Neurons as Large Deviation Detectors , 2007, The Journal of Neuroscience.

[50]  Jaime de la Rocha,et al.  Supplementary Information for the article ‘ Correlation between neural spike trains increases with firing rate ’ , 2007 .

[51]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[52]  Thomas A. Cleland,et al.  Early transformations in odor representation , 2010, Trends in Neurosciences.

[53]  Hermann Riecke,et al.  Mechanisms of pattern decorrelation by recurrent neuronal circuits , 2010, Nature Neuroscience.

[54]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[55]  D. Dacey,et al.  Origins of perception : retinal ganglion cell diversity and the creation of parallel visual pathways , 2011 .

[56]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[57]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[58]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .