Structural and Magnetic Studies of Dimeric Copper(II) 2,2-Diphenylpropanoato and Triphenylacetato Complexes with Oxygen-Donor Ligands. the Cage Geometry of Dimeric α-Phenyl Substituted Copper(II) Carboxylates

The syntheses, structures, and magnetic properties of copper(II) carboxylates with bridging α-phenyl substituted carboxylato ligands and unidentate oxygen-donor ligands are reported: Cu2 (O2CCPh2Me)4(acetone)2 (1), triclinic , a = 15.441(4), b = 15.602(4), c = 12.790(2) A, α = 106.52(2), β = 92.11(2), γ = 96.38(2)°, V = 2928(1) A3, Z = 2, −2J = 352 cm−1; [Cu2(O2CCPh2Me)4(H2O)2]·H2O (2), triclinic , a = 13.895(2), b = 14.717(2), c = 7.318(1) A, α = 95.67(1), β = 101.71(1), γ = 68.12(1)°, V = 1359.3(4) A3, Z = 1, −2J = 344 cm−1; [Cu2(O2CCPh2Me)4(EtOH)2]·EtOH (3), monoclinic P21/c, a = 26.927(5), b = 9.152(3), c = 26.881(5) A, β = 115.02(1)°, V = 6003(2) A3, Z = 4, −2J = 347 cm−1; [Cu2(O2CCPh3)4(Ph3CCO2H)2]·CH2Cl2 (4), monoclinic P21/c, a = 18.133(8), b = 23.046(7), c = 25.013(7) A, β = 101.01(3)°, V = 10268(5) A3, Z = 4; [Cu2(O2CCPh3)4(H2O)2]·4H2O (5a), tetragonal , a = 18.451(6), c = 10.703(7) A, V = 3643(3) A3, Z = 2; [Cu2(O2CCPh3)4(H2O)2]·2H2O (5b), tetragonal , a = 18.224(2), c = 10.776(5) A, V = 3578(1...

[1]  T. Tokii,et al.  Dimeric copper(II) 2-methyl-2-phenylpropanoate adducts with water or 2,6-lutidine and a monomeric copper(II) triphenylacetate adduct with 2,6-lutidine , 1993 .

[2]  T. Tokii,et al.  Magneto-Structural Correlations in Dimeric Copper(II) Carboxylates , 1993 .

[3]  T. Tokii,et al.  Dimeric copper(II) triphenylacetate adducts with 4-picoline , 1993 .

[4]  J. Rose,et al.  Magneto-structural corrections of dimeric copper(II) trichloroacetates , 1992 .

[5]  Chong-Hwan Chang,et al.  Structural, Magnetic, and Spectroscopic Characterization of the Pyridine Complexes of Copper(II) Triphenylacetate: A Dimeric Copper(II) Triphenylacetate–Pyridine Complex with Distorted Trigonal Bipyramidal Geometry Around Copper , 1991 .

[6]  H. Uekusa,et al.  Correlation of electron density and spin-exchange interaction in dimeric copper(II) formates, acetates and silanecarboxylates , 1991 .

[7]  H. Uekusa,et al.  Structural comparisons between copper(II) triorganosilanecarboxylate, -germanecarboxylate and -acetate dimers , 1990 .

[8]  Y. Muto,et al.  Factors affecting the magnetic properties of dimeric copper(II) complexes , 1988 .

[9]  O. W. Steward,et al.  New mechanisms for the base-catalyzed cleavage of SiSi bonds in organopolysilanes: the base-catalyzed solvolysis of pentaphenyldisilanecarboxylic acid and pentaphenyldisilanol in ethanol/water media , 1988 .

[10]  T. Tokii,et al.  Magnetic Properties of Dimeric Copper(II) Trichloroacetate Adducts with 3-Substituted Pyridines , 1987 .

[11]  R. Doedens,et al.  Nitroxyl adducts of copper(II) trihaloacetates: diamagnetic copper(II) complexes with a novel dimeric structure , 1986 .

[12]  H. Horie,et al.  The Magnetic Properties of Three Copper(II) Trichloroacetate Adducts with Caffeine and the Crystal Structure of Dicaffeinetetrakis(mu-trichloroacetato)dicopper(II) Dibenzene Solvate, [Cu(CCl3COO)2(C8H10N4O2)]2.2C6H6. , 1986 .

[13]  T. Mak,et al.  Metal-(phenylthio)acetic acid interactions—IV. The crystal structure of tetra-μ-[(2,4-dichloro-5-methylphenylthio)acetato-O,O′]-bis[acetonecopper(II)], a dimeric complex having coordinated acetone molecules , 1985 .

[14]  R. Doedens,et al.  A novel variation on a classical dimeric structure type. Preparation and structure of the metal-nitroxyl complex [Cu(O2CCCl3)2(Tempo)]2 , 1983 .

[15]  D. N. Sathyanarayana,et al.  X-Ray crystal structures of some adducts of dimeric copper(II) acetate. Nature of the copper–copper interaction , 1983 .

[16]  J. Zemann Elektrostatische Energien von AB5-Komplexen , 1963 .