A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm

Abstract This article acquaints a new method to forecast the time series dataset based on neutrosophic-quantum optimization approach. This study uses neutrosophic set (NS) theory to represent the inherited uncertainty of time series dataset with three different memberships as truth, indeterminacy and false. We refer such representations of time series dataset as neutrosophic time series (NTS). This NTS is further utilized for modeling and forecasting time series dataset. Study showed that the performance of NTS modeling approach is highly dependent on the optimal selection of the universe of discourse and its corresponding intervals. To resolve this issue, this study selects quantum optimization algorithm (QOA) and ensembles with the NTS modeling approach. QOA improves the performance of the NTS modeling approach by selecting the globally optimal universe of discourse and its corresponding intervals from the list of local optimal solutions. The proposed hybrid model (i.e., NTS-QOA model) is verified and validated with datasets of university enrollment of Alabama (USA), Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corporation (TSEC) weighted index. Various experimental results signify the efficiency of the proposed NTS-QOA model over existing benchmark models in terms of average forecasting error rates (AFERs) of 0.44%, 0.066% and 1.27% for the university enrollment, TAIFEX index and TSEC weighted index, respectively.

[1]  Rajshekhar Sunderraman,et al.  Single Valued Neutrosophic Sets , 2010 .

[2]  Pritpal Singh,et al.  A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches , 2018, J. Comput. Sci..

[3]  Xiaodong Liu,et al.  A generalized method for forecasting based on fuzzy time series , 2011, Expert Syst. Appl..

[4]  Kun-Huang Huarng,et al.  A neural network-based fuzzy time series model to improve forecasting , 2010, Expert Syst. Appl..

[5]  Shyi-Ming Chen,et al.  Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques , 2008, Expert Syst. Appl..

[6]  Pritpal Singh,et al.  High-order fuzzy-neuro expert system for time series forecasting , 2013, Knowl. Based Syst..

[7]  Kun-Huang Huarng,et al.  A bivariate fuzzy time series model to forecast the TAIEX , 2008, Expert Syst. Appl..

[8]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[9]  Seyed Hossein Hashemi Doulabi,et al.  Choosing the appropriate order in fuzzy time series: A new N-factor fuzzy time series for prediction of the auto industry production , 2010, Expert Syst. Appl..

[10]  Sahidul Islam,et al.  Neutrosophic Goal Geometric Programming Problem and Its Application to Multi-objective Reliability Optimization Model , 2018, Int. J. Fuzzy Syst..

[11]  Yi Pan,et al.  An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization , 2009, Expert Syst. Appl..

[12]  Gaurav Dhiman,et al.  A quantum approach for time series data based on graph and Schrödinger equations methods , 2018, Modern Physics Letters A.

[13]  Shi-Jinn Horng,et al.  Forecasting TAIFEX based on fuzzy time series and particle swarm optimization , 2010, Expert Syst. Appl..

[14]  Oscar Castillo,et al.  ClusFuDE: Forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution , 2018, Eng. Appl. Artif. Intell..

[15]  Alexey V. Melkikh,et al.  Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields , 2017 .

[16]  Ching-Hsue Cheng,et al.  OWA-based ANFIS model for TAIEX forecasting , 2013 .

[17]  Hsuan-Shih Lee,et al.  Fuzzy forecasting based on fuzzy time series , 2004, Int. J. Comput. Math..

[18]  Gareth J. Janacek,et al.  Monte Carlo simulation and random number generation , 1988, IEEE J. Sel. Areas Commun..

[19]  Pritpal Singh,et al.  High-order fuzzy-neuro-entropy integration-based expert system for time series forecasting , 2017, Neural Computing and Applications.

[20]  Farid Radmehr,et al.  FORECASTING METHOD BASED ON HIGH ORDER FUZZY TIME SERIES AND SIMULATED ANNEALING TECHNIQUE , 2011 .

[21]  Tai-Liang Chen,et al.  A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market , 2011, Expert Syst. Appl..

[22]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[23]  Wai Keung Wong,et al.  Adaptive Time-Variant Models for Fuzzy-Time-Series Forecasting , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Shyi-Ming Chen,et al.  Forecasting enrollments using high‐order fuzzy time series and genetic algorithms , 2006, Int. J. Intell. Syst..

[25]  Alexey V. Melkikh,et al.  Nonlinearity of Quantum Mechanics and Solution of the Problem of Wave Function Collapse , 2015 .

[26]  Pritpal Singh,et al.  An efficient time series forecasting model based on fuzzy time series , 2013, Eng. Appl. Artif. Intell..

[27]  Kun-Huang Huarng,et al.  A Multivariate Heuristic Model for Fuzzy Time-Series Forecasting , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  B. Chissom,et al.  Forecasting enrollments with fuzzy time series—part II , 1993 .

[29]  Hao-Tien Liu,et al.  An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers , 2007, Fuzzy Optim. Decis. Mak..

[30]  W. Woodall,et al.  A comparison of fuzzy forecasting and Markov modeling , 1994 .

[31]  Çagdas Hakan Aladag,et al.  A new time invariant fuzzy time series forecasting method based on particle swarm optimization , 2012, Appl. Soft Comput..

[32]  Wai Keung Wong,et al.  A heuristic time-invariant model for fuzzy time series forecasting , 2011, Expert Syst. Appl..

[33]  Shyi-Ming Chen,et al.  Handling forecasting problems based on two-factors high-order fuzzy time series , 2006, IEEE Trans. Fuzzy Syst..

[34]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[35]  Pritpal Singh,et al.  Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization , 2014, Int. J. Approx. Reason..

[36]  Sanjay Kumar,et al.  INTUITIONISTIC FUZZY SETS BASED METHOD FOR FUZZY TIME SERIES FORECASTING , 2012, Cybern. Syst..

[37]  Yo-Ping Huang,et al.  The hybrid grey-based models for temperature prediction , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[38]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[39]  Pritpal Singh,et al.  Information Classification, Visualization and Decision-Making: A Neutrosophic Set Theory Based Approach , 2018, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[40]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[41]  Ching-Hsue Cheng,et al.  Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost , 2006 .

[42]  Sanjay Kumar,et al.  Partitions based computational method for high-order fuzzy time series forecasting , 2012, Expert Syst. Appl..

[43]  Kunhuang Huarng,et al.  Effective lengths of intervals to improve forecasting in fuzzy time series , 2001, Fuzzy Sets Syst..

[44]  Pinaki Majumdar,et al.  On similarity and entropy of neutrosophic sets , 2013, J. Intell. Fuzzy Syst..

[45]  Ping Jiang,et al.  A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction , 2017, Appl. Soft Comput..

[46]  Ching-Hsue Cheng,et al.  Multi-attribute fuzzy time series method based on fuzzy clustering , 2008, Expert Syst. Appl..

[47]  Pritpal Singh,et al.  A brief review of modeling approaches based on fuzzy time series , 2015, International Journal of Machine Learning and Cybernetics.

[48]  Erol Egrioglu,et al.  High order fuzzy time series method based on pi-sigma neural network , 2018, Eng. Appl. Artif. Intell..

[49]  Pritpal Singh,et al.  An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors , 2013, Knowledge and Information Systems.