Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications

Lamellar transition-metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two-dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2 nanosheets with large specific surface area can modulate their electronic structures and interlayer distance as well as the intercalated foreign species, which is important for optimizing their performance in different devices. In this review, a summary on recent progress of MX2 nanosheets and the significance of their interlayer engineering is presented firstly. Synthesis of interlayer-expanded MX2 nanosheets with various strategies is then discussed in detail. Emphasis is focused on their applications in rechargeable batteries, pseudocapacitors, hydrogen evolution reaction (HER) catalysis and treatments of environmental contaminants, demonstrating the importance of interlayer engineering on controlling performance of MX2. The current challenges of the interlayer-expanded MX2 and outlooks for further advances are finally discussed.

[1]  P. Cui,et al.  MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes , 2015 .

[2]  Yanguang Li,et al.  MoxW1−x(SySe1−y)2 Alloy Nanoflakes for High‐Performance Electrocatalytic Hydrogen Evolution , 2016 .

[3]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[4]  Hai Wang,et al.  Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries , 2017 .

[5]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[6]  Metal-Semiconductor Phase-Transition in WSe2(1-x) Te2x Monolayer. , 2017, Advanced materials.

[7]  G. González,et al.  Temperature effects on the diffusion of lithium in MoS2 , 1995 .

[8]  Jun Chen,et al.  Lithium intercalation in open-ended TiS2 nanotubes. , 2003, Angewandte Chemie.

[9]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[10]  Q. Qu,et al.  3D Interconnected and Multiwalled Carbon@MoS2 @Carbon Hollow Nanocables as Outstanding Anodes for Na-Ion Batteries. , 2016, Small.

[11]  Hongli Zhu,et al.  Two-Dimensional Water-Coupled Metallic MoS2 with Nanochannels for Ultrafast Supercapacitors. , 2017, Nano letters.

[12]  J. Lemmon,et al.  Preparation and Characterization of Nanocomposites of Polyethers and Molybdenum Disulfide , 1994 .

[13]  Chun‐Sing Lee,et al.  Composition and Interface Engineering of Alloyed MoS2 x Se2(1- x ) Nanotubes for Enhanced Hydrogen Evolution Reaction Activity. , 2016, Small.

[14]  Liping Wang,et al.  Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS₂. , 2015, ACS nano.

[15]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[16]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[17]  Jung-Kul Lee,et al.  3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties , 2015 .

[18]  Ziqiang Zhu,et al.  MoS2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries , 2015 .

[19]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[20]  Li Jiahe,et al.  Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation , 2016 .

[21]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[22]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[23]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[24]  Yongchang Liu,et al.  Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries , 2013 .

[25]  Chun‐Sing Lee,et al.  Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction , 2016 .

[26]  B. Liu,et al.  First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage , 2016 .

[27]  Hua Wang,et al.  Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. , 2014, Small.

[28]  Haojie Fei,et al.  Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution , 2017 .

[29]  Dianzeng Jia,et al.  Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries , 2016 .

[30]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[31]  Weitao Yang,et al.  Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. , 2013, Nano letters.

[32]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[33]  H. Vrubel,et al.  Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution , 2012 .

[34]  Shaojun Guo,et al.  MoS2 Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis , 2016 .

[35]  R. Yu,et al.  Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. , 2016, Nano letters.

[36]  Bing Sun,et al.  Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage , 2012 .

[37]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[38]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[39]  Zhongfan Liu,et al.  Recent Advances in Controlling Syntheses and Energy Related Applications of MX2 and MX2/Graphene Heterostructures , 2016 .

[40]  Su-Ho Cho,et al.  Dimensional Effects of MoS2 Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. , 2016, ACS applied materials & interfaces.

[41]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[42]  Z. Wen,et al.  Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions. , 2015, ACS nano.

[43]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[44]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[45]  Hui Wang,et al.  Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries , 2016 .

[46]  Xun Wang,et al.  Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions , 2015 .

[47]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[48]  Feihe Huang,et al.  Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. , 2013, Small.

[49]  Yan Yao,et al.  Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing , 2016 .

[50]  Hisato Yamaguchi,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature Materials.

[51]  Karl O. Albrecht,et al.  First-Principles Characterization of Potassium Intercalation in Hexagonal 2H-MoS2 , 2012 .

[52]  Jun He,et al.  Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. , 2015, Nanoscale.

[53]  F. Alimohammadi,et al.  Interlayer-expanded MoS2 , 2017 .

[54]  S. Mitra,et al.  Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery , 2015, Scientific Reports.

[55]  Jun Chen,et al.  MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. , 2014, Angewandte Chemie.

[56]  Wenpei Kang,et al.  Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries , 2017 .

[57]  James R Friend,et al.  Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. , 2013, ACS nano.

[58]  X. Lou,et al.  Ultrathin MoS₂ Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. , 2015, Angewandte Chemie.

[59]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[60]  Yang Liu,et al.  Carbon-Stabilized Interlayer-Expanded Few-Layer MoSe2 Nanosheets for Sodium Ion Batteries with Enhanced Rate Capability and Cycling Performance. , 2016, ACS applied materials & interfaces.

[61]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[62]  B. Fang,et al.  Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2 , 2015 .

[63]  R. Bissessur,et al.  Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites , 2006 .

[64]  Yafei Li,et al.  Molybdenum Disulfide/Nitrogen‐Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution , 2016 .

[65]  Chun‐Sing Lee,et al.  In Situ Carbon-Doped Mo(Se0.85 S0.15 )2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries. , 2015, Small.

[66]  Bo Liu,et al.  High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide , 2014, Nature Communications.

[67]  H. Shin,et al.  Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. , 2013, Angewandte Chemie.

[68]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[69]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[70]  L. Xie,et al.  Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. , 2015, Nanoscale.

[71]  Yuanbo Zhang,et al.  Emergent elemental two-dimensional materials beyond graphene , 2017 .

[72]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[73]  Yanguang Li,et al.  Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction , 2015 .

[74]  Hua Zhang,et al.  Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. , 2016, Angewandte Chemie.

[75]  M Cais,et al.  Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors , 1971, Science.

[76]  M. Fuhrer,et al.  Helicity-resolved Raman scattering of MoS₂, MoSe₂, WS₂, and WSe₂ atomic layers. , 2015, Nano letters.

[77]  M. Chan,et al.  Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production , 2015, Nature Communications.

[78]  Zhihong Liu,et al.  Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts , 2014 .

[79]  Longlong Ma,et al.  Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. , 2016, Nanoscale.

[80]  Zhaojie Wang,et al.  Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors , 2017 .

[81]  Changwen Hu,et al.  Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance. , 2013, Chemistry, an Asian journal.

[82]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[83]  Sen Xin,et al.  Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. , 2014, Angewandte Chemie.

[84]  Liquan Chen,et al.  Atomic-scale clarification of structural transition of MoS₂ upon sodium intercalation. , 2014, ACS nano.

[85]  E. Wachtel,et al.  Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties. , 2002, Journal of the American Chemical Society.

[86]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.

[87]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[88]  Pooi See Lee,et al.  Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[89]  S. Ida Development of Light Energy Conversion Materials Using Two-Dimensional Inorganic Nanosheets , 2015 .

[90]  Kobayashi,et al.  Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. , 1995, Physical review. B, Condensed matter.

[91]  Haotian Wang,et al.  Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution , 2015, Nano Research.

[92]  Chun‐Sing Lee,et al.  Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction , 2015 .

[93]  Lain-Jong Li,et al.  Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams , 2013, Advanced materials.

[94]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[95]  Yiming Zhu,et al.  Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys , 2014, Advanced materials.

[96]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[97]  S. Morrison,et al.  Inclusion Systems of Organic Molecules in Restacked Single-Layer Molybdenum Disulfide , 1989, Science.

[98]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[99]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[100]  Dong Sung Choi,et al.  Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. , 2014, Nano letters.

[101]  Y. Zubavichus,et al.  Layered compounds assembled from molybdenum disulfide single-layers and alkylammonium cations , 2000 .

[102]  Yanguang Li,et al.  Ultrathin MoS2(1–x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction , 2015 .

[103]  Yanjie Hu,et al.  2D Monolayer MoS2–Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage , 2015, Advanced materials.

[104]  Shihe Yang,et al.  MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies , 2014 .

[105]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[106]  Martin Pumera,et al.  Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. , 2015, Small.

[107]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[108]  Jun Chen,et al.  TiS2 nanotubes as the cathode materials of Mg-ion batteries. , 2004, Chemical communications.

[109]  G. Andersson,et al.  3D WS2 Nanolayers@Heteroatom‐Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes , 2015, Advanced materials.

[110]  Weiyu Xu,et al.  Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application , 2016, Nano Research.

[111]  Yuanyuan Zhang,et al.  Hollow Structured Micro/Nano MoS₂ Spheres for High Electrocatalytic Activity Hydrogen Evolution Reaction. , 2016, ACS applied materials & interfaces.

[112]  M. Mckelvy,et al.  Deintercalation and reintercalation energetics of ammoniated titanium disulfide , 1987 .

[113]  Wieslaw J. Roth,et al.  Layer like porous materials with hierarchical structure. , 2016, Chemical Society reviews.

[114]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[115]  Q. Qu,et al.  From Dispersed Microspheres to Interconnected Nanospheres: Carbon-Sandwiched Monolayered MoS2 as High-Performance Anode of Li-Ion Batteries. , 2015, ACS applied materials & interfaces.

[116]  Fei Meng,et al.  Highly active hydrogen evolution catalysis from metallic WS2 nanosheets , 2014 .

[117]  J. Eckert,et al.  Nature of guest species within alkaline earth-ammonia intercalates of titanium disulfide , 1994 .

[118]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[119]  Yongchang Liu,et al.  Graphene intercalated in graphene-like MoS2: A promising cathode for rechargeable Mg batteries , 2017 .

[120]  Y. Lan,et al.  Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage , 2016 .

[121]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[122]  P. Ajayan,et al.  Stable Metallic 1T‐WS2 Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties , 2015, Advanced materials.

[123]  Hongzheng Chen,et al.  Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution , 2015 .

[124]  Bo Chen,et al.  2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions , 2016, Advanced materials.

[125]  Chun‐Sing Lee,et al.  Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries , 2016 .

[126]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[127]  Lehui Lu,et al.  MoS2 Nanosheets with Widened Interlayer Spacing for High‐Efficiency Removal of Mercury in Aquatic Systems , 2016 .

[128]  Martin Pumera,et al.  Layered transition metal dichalcogenides for electrochemical energy generation and storage , 2014 .

[129]  Zhiyu Wang,et al.  Self-templated formation of tremella-like MoS2 with expanded spacing of (002) crystal planes for Li-ion batteries , 2016, Journal of Materials Science.

[130]  Yingju Liu,et al.  Hierarchically nanostructured MoS2 with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction , 2016 .

[131]  A. Jeffery,et al.  Two-Dimensional Nanosheets and Layered Hybrids of MoS2 and WS2 through Exfoliation of Ammoniated MS2 (M = Mo,W) , 2014 .

[132]  S. Zhang,et al.  Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. , 2014, ACS applied materials & interfaces.

[133]  X. Lou,et al.  Synthesis of Highly Uniform Molybdenum-Glycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[134]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[135]  Chun‐Sing Lee,et al.  Conversion of 1T-MoSe2 to 2H-MoS2xSe2-2x mesoporous nanospheres for superior sodium storage performance. , 2017, Nanoscale.

[136]  Liquan Chen,et al.  Guest-host interactions and their impacts on structure and performance of nano-MoS2. , 2015, Nanoscale.

[137]  Jinlong Yang,et al.  Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. , 2011, Journal of the American Chemical Society.

[138]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[139]  L. Tang,et al.  Boosting the lithium storage performance of MoS2 with graphene quantum dots , 2016 .

[140]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[141]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[142]  K. Kuroda,et al.  Interlayer Condensation of Protonated Layered Silicate Magadiite through Refluxing in N-Methylformamide , 2015 .

[143]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[144]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[145]  Chen Xu,et al.  Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution , 2014 .

[146]  Xiuling Li,et al.  Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2 : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. , 2015, Small.

[147]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[148]  Lichun Yang,et al.  Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS2 Electrocatalysts in Hydrogen Evolution Reaction. , 2015, ACS applied materials & interfaces.

[149]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[150]  A. Weiss,et al.  Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2 , 1974 .

[151]  X. Lou,et al.  A Nanosheets‐on‐Channel Architecture Constructed from MoS2 and CMK‐3 for High‐Capacity and Long‐Cycle‐Life Lithium Storage , 2014 .

[152]  Arnan Mitchell,et al.  Two dimensional and layered transition metal oxides , 2016 .

[153]  Z. Bakenov,et al.  Synthesis of hierarchical MoS2 microspheres composed of nanosheets assembled via facile hydrothermal method as anode material for lithium-ion batteries , 2016, Journal of Nanoparticle Research.

[154]  M. Pumera,et al.  2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. , 2015, Chemical communications.

[155]  Yifan Sun,et al.  Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. , 2015, Nano letters.

[156]  Hongli Zhu,et al.  Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction , 2016, Nature Communications.

[157]  Lifang Jiao,et al.  WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries. , 2015, Chemistry.

[158]  Gong Zhang,et al.  Two-dimensional layered MoS2: rational design, properties and electrochemical applications , 2016 .

[159]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[160]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.