Functional estimation under shape constraints

In the problem of nonparametric regression for a fixed design model, we may want to use additional information about the shape of the regression function, when available, to improve the estimation. The regression function may, for example, be convex or monotone or more generally belong to a cone in some functional space. We devise a method for improving any ordinary consistent estimate by projecting it onto a discretized version of the cone, using the theory of reproducing kernel Hilbert spaces and convex optimization techniques. The initial estimate can be chosen as a smoothing spline or a convolution type kernel estimate. The latter is shown to be mean square consistent in a Sobolev norm sense. The consistency (in the same sense) of the constrained estimate follows.

[1]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[2]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[3]  Theo Gasser,et al.  Smoothing Techniques for Curve Estimation , 1979 .

[4]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[5]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[6]  Charles K. Chui,et al.  Constrained best approximation in Hilbert space, II , 1992 .

[7]  Par N. Aronszajn La théorie des noyaux reproduisants et ses applications Première Partie , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  D. Cox MULTIVARIATE SMOOTHING SPLINE FUNCTIONS , 1984 .

[9]  Edward J. Wegman,et al.  Isotonic, Convex and Related Splines , 1980 .

[10]  Grace Wahba,et al.  Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities , 1987 .

[11]  Florencio I. Utreras,et al.  Smoothing noisy data under monotonicity constraints existence, characterization and convergence rates , 1985 .

[12]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[13]  Hans-Georg Müller,et al.  Kernel and Probit Estimates in Quantal Bioassay , 1988 .

[14]  L. Birge Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk , 1987 .

[15]  E. Mammen Nonparametric regression under qualitative smoothness assumptions , 1991 .

[16]  Hari Mukerjee,et al.  Monotone Nonparametric Regression , 1988 .

[17]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[18]  Bernard Ycart,et al.  Almost sure convergence of smoothingDm-splines for noisy data , 1993 .

[19]  G. Wahba Spline models for observational data , 1990 .

[20]  C. Micchelli,et al.  Smoothing and Interpolation in a Convex Subset of a Hilbert Space , 1988 .

[21]  A Simple Solution to a Nonparametric Maximum Likelihood Estimation Problem , 1984 .