Impact of ECOM Solar Radiation Pressure Models on Multi-GNSS Ultra-Rapid Orbit Determination

[1]  Jim R. Ray,et al.  On the precision and accuracy of IGS orbits , 2009 .

[2]  H. Fliegel,et al.  Solar force modeling of block IIR Global Positioning System satellites , 1996 .

[3]  Harald Schuh,et al.  Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning , 2018, Journal of Geodesy.

[4]  Qile Zhao,et al.  A review on the inter-frequency biases of GLONASS carrier-phase data , 2016, Journal of Geodesy.

[5]  Yidong Lou,et al.  Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines , 2016, GPS Solutions.

[6]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[7]  Peter Steigenberger,et al.  The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, prospects and challenges , 2017 .

[8]  Gerd Gendt,et al.  Improving carrier-phase ambiguity resolution in global GPS network solutions , 2005 .

[9]  Qile Zhao,et al.  Undifferenced ionospheric-free ambiguity resolution using GLONASS data from inhomogeneous stations , 2017, GPS Solutions.

[10]  P. Steigenberger,et al.  Adjustable box-wing model for solar radiation pressure impacting GPS satellites , 2012 .

[11]  Peter Steigenberger,et al.  Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude , 2017 .

[12]  Liu Jing-nan,et al.  PANDA software and its preliminary result of positioning and orbit determination , 2003, Wuhan University Journal of Natural Sciences.

[13]  Tomasz Hadas,et al.  IGS RTS precise orbits and clocks verification and quality degradation over time , 2014, GPS Solutions.

[14]  O. Montenbruck,et al.  Enhanced solar radiation pressure modeling for Galileo satellites , 2015, Journal of Geodesy.

[15]  Maorong Ge,et al.  A New Data Processing Strategy for Huge GNSS Global Networks , 2006 .

[16]  Harald Schuh,et al.  Improving integer ambiguity resolution for GLONASS precise orbit determination , 2016, Journal of Geodesy.

[17]  Yidong Lou,et al.  Real-time precise orbit determination for BDS satellites using the square root information filter , 2019, GPS Solutions.

[18]  Florian Dilssner,et al.  The GLONASS-M satellite yaw-attitude model , 2011 .

[19]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[20]  Peter Steigenberger,et al.  Galileo Orbit and Clock Quality of the IGS Multi-GNSS Experiment , 2015 .

[21]  C. Shi,et al.  Precise orbit determination of BeiDou constellation based on BETS and MGEX network , 2014, Scientific Reports.

[22]  O. Colombo The dynamics of global positioning system orbits and the determination of precise ephemerides , 1989 .

[23]  R. Dach,et al.  CODE’s new solar radiation pressure model for GNSS orbit determination , 2015, Journal of Geodesy.

[24]  M. Ziebart,et al.  Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests , 2004 .

[25]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[26]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[27]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[28]  T. Springer,et al.  Demonstrating developments in high-fidelity analytical radiation force modelling methods for spacecraft with a new model for GPS IIR/IIR-M , 2019, Journal of Geodesy.

[29]  H. Fliegel,et al.  Global Positioning System Radiation Force Model for geodetic applications , 1992 .

[30]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[31]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[32]  Robert Weber,et al.  Precise GLONASS orbit determination within the IGS/IGLOS – Pilot Project , 2004 .

[33]  U. Hugentobler,et al.  Prediction versus real-time orbit determination for GNSS satellites , 2019, GPS Solutions.

[34]  Jan Kouba,et al.  A simplified yaw-attitude model for eclipsing GPS satellites , 2009 .

[35]  G. Beutler,et al.  A New Solar Radiation Pressure Model for GPS Satellites , 1999, GPS Solutions.

[36]  S. Luthcke,et al.  Erratum-Modeling Radiation Forces Acting on Topex/Poseidon for Precision Orbit Determination , 1992 .

[37]  Harald Schuh,et al.  Estimating the yaw-attitude of BDS IGSO and MEO satellites , 2015, Journal of Geodesy.

[38]  Rolf Dach,et al.  CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis , 2017, Journal of Geodesy.