Shifted Generalized Pascal Matrices in the Context of Clifford Algebra-Valued Polynomial Sequences
暂无分享,去创建一个
[1] M. I. Falcão,et al. Laguerre derivative and monogenic Laguerre polynomials: An operational approach , 2011, Math. Comput. Model..
[2] Lidia Aceto,et al. The Matrices of Pascal and Other Greats , 2001, Am. Math. Mon..
[3] Polynomials satisfying a binomial theorem , 1970 .
[4] D. Peña. Shifted Appell Sequences in Clifford Analysis , 2011, 1102.4373.
[5] Daniel J. Velleman,et al. Pascal's Matrices , 1993 .
[6] L. Aceto,et al. A matrix approach to Sheffer polynomials , 2017 .
[7] R. Lávička. Complete Orthogonal Appell Systems for Spherical Monogenics , 2011, 1106.2970.
[8] P. Appell,et al. Sur une classe de polynômes , 1880 .
[9] Helmuth R. Malonek,et al. A hypercomplex derivative of monogenic functsions in and its Applications , 1999 .
[10] M. I. Falcão,et al. A Matrix Recurrence for Systems of Clifford Algebra-Valued Orthogonal Polynomials , 2014 .
[11] V. Souček,et al. The Gelfand-Tsetlin bases for spherical monogenics in dimension 3 , 2010, 1010.1615.
[12] H. Malonek,et al. Matrix approach to hypercomplex Appell polynomials , 2016, 1602.04167.
[13] D. Trigiante,et al. Special polynomials as continuous dynamical systems , 2010 .
[14] H. Malonek,et al. A unified matrix approach to the representation of Appell polynomials , 2014, 1406.1444.
[15] M. I. Falcão,et al. Three-Term Recurrence Relations for Systems of Clifford Algebra-Valued Orthogonal Polynomials , 2017 .
[16] M. I. Falcão,et al. Generalized Exponentials through Appell sets in Rn+1 and Bessel functions , 2007 .