Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction

[1]  L. Decin,et al.  ALMA spectral line and imaging survey of a low and a high mass-loss rate AGB star between 335 and 362 GHz , 2018, Astronomy & Astrophysics.

[2]  S. Höfner,et al.  Mass loss of stars on the asymptotic giant branch , 2018 .

[3]  I. E. Mellah,et al.  Formation of wind-captured discs in Supergiant X-ray binaries : consequences for Vela X-1 and Cygnus X-1. , 2018, 1810.12933.

[4]  A. Zijlstra,et al.  Pulsation-triggered dust production by asymptotic giant branch stars , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  D. A. García-Hernández,et al.  Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity , 2018, 1803.02028.

[6]  C. Abate,et al.  Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind , 2017, 1708.03639.

[7]  R. Taam,et al.  The large-scale nebular pattern of a superwind binary in an eccentric orbit , 2017, Nature Astronomy.

[8]  A. Frank,et al.  Mass transfer and disc formation in AGB binary systems , 2017, 1702.06160.

[9]  I. E. Mellah,et al.  A numerical investigation of wind accretion in persistent supergiant X-ray binaries – I. Structure of the flow at the orbital scale , 2016, 1609.01532.

[10]  A. Zijlstra,et al.  The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity , 2016, 1610.05761.

[11]  M. Moe,et al.  Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars , 2016, 1606.05347.

[12]  C. Abate,et al.  How plausible are the proposed formation scenarios of CEMP-r/s stars? , 2016, 1601.00976.

[13]  H. Ward,et al.  ALMA Data Suggest the Presence of Spiral Structure in the Inner Wind of CW Leo , 2015 .

[14]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE , 2015, 1507.07338.

[15]  M. Barlow,et al.  Herschel observations of extreme OH/IR stars The isotopic ratios of oxygen as a sign-post for the stellar mass , 2015, 1505.05750.

[16]  Robin Lombaert,et al.  Simplified models of stellar wind anatomy for interpreting high-resolution data - Analytical approach to embedded spiral geometries , 2015, 1504.04996.

[17]  L. Decin,et al.  ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis , 2014, 1410.2060.

[18]  A. Karakas Helium enrichment and carbon-star production in metal-rich populations , 2014, 1408.5936.

[19]  J. Blommaert,et al.  The problematically short superwind of OH/IR stars - Probing the outflow with the 69 {\mu}m spectral band of forsterite , 2013, 1311.6908.

[20]  R. Taam,et al.  EVIDENCE OF A BINARY-INDUCED SPIRAL FROM AN INCOMPLETE RING PATTERN OF CIT 6 , 2013, 1308.4140.

[21]  M. Barlow,et al.  OH/IR stars and their superwinds as observed by the Herschel Space Observatory ⋆ , 2013, 1306.1777.

[22]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[23]  I. Gregorio-Monsalvo,et al.  Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris , 2012, Nature.

[24]  R. Taam,et al.  A NEW METHOD OF DETERMINING THE CHARACTERISTICS OF EVOLVED BINARY SYSTEMS REVEALED IN THE OBSERVED CIRCUMSTELLAR PATTERNS: APPLICATION TO AFGL 3068 , 2012, 1209.6360.

[25]  R. Taam,et al.  WIDE BINARY EFFECTS ON ASYMMETRIES IN ASYMPTOTIC GIANT BRANCH CIRCUMSTELLAR ENVELOPES , 2012, 1209.2128.

[26]  S. Hofner,et al.  Exploring wind-driving dust species in cool luminous giants III : Wind models for M-type AGB stars , 2012, 1502.00032.

[27]  M. Groenewegen An extension of the DUSTY radiative transfer code and an application to OH 26.5 and TT Cygni , 2012 .

[28]  J. Walsh,et al.  The Expansion Proper Motions of the Planetary Nebula NGC 6302 from HST imaging , 2011, 1105.3381.

[29]  K. Menten,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae , 2010, 1008.1083.

[30]  P. Diamond,et al.  Insight into the OH polarimetric structure of OH 26.5+0.6 , 2010, 1004.2659.

[31]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[32]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[33]  M. Groenewegen,et al.  Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants , 2009, 0908.3087.

[34]  Jeremy Lim,et al.  TRACING THE ASYMMETRY IN THE ENVELOPE AROUND THE CARBON STAR CIT 6 , 2008, 0812.3372.

[35]  H. Olofsson,et al.  On the reliability of mass-loss-rate estimates for AGB stars , 2008, 0806.0517.

[36]  I. Ribas,et al.  The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution , 2008, 0804.3034.

[37]  A. Frank,et al.  The Formation of Crystalline Dust in AGB Winds from Binary-induced Spiral Shocks , 2007, 0709.2292.

[38]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[39]  Eva Villaver,et al.  Can Planets Survive Stellar Evolution? , 2007, astro-ph/0702724.

[40]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[41]  P. J. Huggins,et al.  Imaging the circumstellar envelopes of AGB stars , 2006 .

[42]  K. Justtanont,et al.  Near-infrared observations of water-ice in OH/IR stars , 2006, astro-ph/0601649.

[43]  A. Zijlstra,et al.  An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005, astro-ph/0504379.

[44]  O. Chesneau,et al.  The mid-IR spatially resolved environment of OH 26.5+0.6 at maximum luminosity , 2005, astro-ph/0501187.

[45]  A. Zijlstra,et al.  Asymptotic giant branch superwind speed at low metallicity , 2004 .

[46]  K. Justtanont,et al.  Imaging the circumstellar envelope of OH 26.5+0.6 , 2002 .

[47]  J. Nuth,et al.  Evolving Optical Properties of Annealing Silicate Grains: From Amorphous Condensate to Crystalline Mineral , 2000 .

[48]  I. Yamamura,et al.  Low-temperature crystallization of silicate dust in circumstellar disks , 1999, Nature.

[49]  Cecile Loup,et al.  MASS-LOSS RATES AND LUMINOSITY FUNCTIONS OF DUST-ENSHROUDED AGB STARS AND RED SUPERGIANTS IN THE LMC , 1999 .

[50]  M. Morris,et al.  Bipolar Pre-Planetary Nebulae: Hydrodynamics of Dusty Winds in Binary Systems. II. Morphology of the Circumstellar Envelopes , 1999 .

[51]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[52]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[53]  E. Sedlmayr,et al.  TIP-AGB STELLAR EVOLUTION IN THE PRESENCE OF A PULSATING, DUST-INDUCED SUPERWIND , 1999 .

[54]  X. Delfosse,et al.  Superwind in evolved OH/IR stars , 1997 .

[55]  A. Tielens,et al.  Modeling of the Dust and Gas Outflows from OH 26.5+0.6: The Superwind , 1996 .

[56]  R. Ortiz,et al.  AGB STARS : DENSITIES AND FORMATION RATES OBTAINED FROM OH/IR STARS , 1996 .

[57]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[58]  J. Whiteoak,et al.  OH/IR Stars in the Magellanic Clouds , 1992 .

[59]  P. Bowers,et al.  Sensitive VLA observations of OH 127.8-0.0 and OH 26.5+0.6 , 1990 .

[60]  A. Omont,et al.  Deficiency of CO emission from massive envelopes around cool OH/IR stars , 1990 .

[61]  M. Rugers,et al.  A comparison between CO-, OH-, and IR-mass-loss rates of evolved stars , 1989 .

[62]  P. J. Bedijn Dust shells around Miras and OH/IR stars: interpretation of IRAS and other infrared measurements , 1987 .

[63]  G. Knapp,et al.  Mass loss from evolved stars. III: Mass loss rates for fifty stars from CO J=1−0 observations , 1985 .

[64]  H. Habing,et al.  The maser strength of OH/IR stars, evolution of mass loss and the creation of a superwind , 1983 .

[65]  A. Renzini Red Giants as Precursors of Planetary Nebulae , 1981 .

[66]  D. Reimers Circumstellar absorption lines and mass loss from red giants , 1974 .