Extinction Events Can Accelerate Evolution

Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

[1]  G. Hardin The competitive exclusion principle. , 1960, Science.

[2]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[3]  David J. Parsons,et al.  Impact of fire suppression on a mixed-conifer forest , 1979 .

[4]  L. Chao,et al.  COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI , 1983, Evolution; international journal of organic evolution.

[5]  N. Stenseth,et al.  COEVOLUTION IN ECOSYSTEMS: RED QUEEN EVOLUTION OR STASIS? , 1984, Evolution; international journal of organic evolution.

[6]  D. Schluter,et al.  Determinants of Morphological Patterns in Communities of Darwin's Finches , 1984, The American Naturalist.

[7]  D. Elliott Dynamics of extinction , 1986 .

[8]  D. Jablonski Background and Mass Extinctions: The Alternation of Macroevolutionary Regimes , 1986, Science.

[9]  D. Raup Biological extinction in earth history. , 1986, Science.

[10]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[11]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Hailman Wonderful Life: The Burgess Shale and the Nature of History, Stephen Jay Gould. W. W. Norton, New York (1989), 347, Price $19.95 (U.S.A.), $27.95 (Canada) , 1991 .

[13]  W. Norton,et al.  Extinction: bad genes or bad luck? , 1991, New scientist.

[14]  Causes of evolution: A paleontological perspective , 1991 .

[15]  R. Ross,et al.  Causes of Evolution: A Paleontological Perspective , 1992 .

[16]  M. A. Leibold The Niche Concept Revisited: Mechanistic Models and Community Context , 1995 .

[17]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[18]  M. Newman,et al.  A model of mass extinction. , 1997, Journal of theoretical biology.

[19]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[20]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[21]  David Jablonski,et al.  Lessons from the past: Evolutionary impacts of mass extinctions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Barnosky,et al.  DISTINGUISHING THE EFFECTS OF THE RED QUEEN AND COURT JESTER ON MIOCENE MAMMAL EVOLUTION IN THE NORTHERN ROCKY MOUNTAINS , 2001 .

[23]  J. Brookfield Evolution: The evolvability enigma , 2001, Current Biology.

[24]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[25]  B. Grant,et al.  What Darwin's Finches Can Teach Us about the Evolutionary Origin and Regulation of Biodiversity , 2003 .

[26]  N. Packard,et al.  Evolution of evolvability via adaptation of mutation rates. , 2003, Bio Systems.

[27]  M. Félix,et al.  Phenotypic neighborhood and micro-evolvability. , 2004, Trends in genetics : TIG.

[28]  M. Symonds,et al.  Evolutionary Ecology , 2004, Evolutionary Ecology.

[29]  M. Foote Pulsed origination and extinction in the marine realm , 2005, Paleobiology.

[30]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[31]  D. Floreano,et al.  Evolutionary Conditions for the Emergence of Communication in Robots , 2007, Current Biology.

[32]  J. McElwain,et al.  Mass extinction events and the plant fossil record. , 2007, Trends in ecology & evolution.

[33]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[34]  Dynamics of Origination and Extinction in the Marine Fossil Record , 2008 .

[35]  N. Stanietsky,et al.  The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity , 2009, Proceedings of the National Academy of Sciences.

[36]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[37]  Michael J Benton,et al.  The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time , 2009, Science.

[38]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[39]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[40]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[41]  Marcus W Feldman,et al.  SPATIAL ENVIRONMENTAL VARIATION CAN SELECT FOR EVOLVABILITY , 2011, Evolution; international journal of organic evolution.

[42]  Kenneth O. Stanley,et al.  Improving evolvability through novelty search and self-adaptation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[43]  Kenneth O. Stanley,et al.  Evolving a diversity of virtual creatures through novelty search and local competition , 2011, GECCO '11.

[44]  Pier Luca Lanzi,et al.  Proceedings of the 13th annual conference on Genetic and evolutionary computation , 2011, GECCO 2011.

[45]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[46]  A. Ivanović,et al.  A Phenotypic Point of View of the Adaptive Radiation of Crested Newts (Triturus cristatus Superspecies, Caudata, Amphibia) , 2012, International journal of evolutionary biology.

[47]  Stéphane Doncieux,et al.  Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study , 2012, Evolutionary Computation.

[48]  Josh C. Bongard,et al.  Evolutionary robotics , 2013, CACM.

[49]  Risto Miikkulainen,et al.  Effective diversity maintenance in deceptive domains , 2013, GECCO '13.

[50]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[51]  Kenneth O. Stanley,et al.  Evolvability Is Inevitable: Increasing Evolvability without the Pressure to Adapt , 2013, PloS one.

[52]  J. C. de Almeida,et al.  Concluding Remarks , 2015, Clinical practice and epidemiology in mental health : CP & EMH.

[53]  A. E. Eiben,et al.  Evolutionary Robotics: What, Why, and Where to , 2015, Front. Robot. AI.