Poisson brackets of orthogonal polynomials

[1]  B. Simon Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .

[2]  I. Nenciu,et al.  Multi‐Hamiltonian structure for the finite defocusing Ablowitz‐Ladik equation , 2007, 0706.2428.

[3]  M. L. Wong First and second kind paraorthogonal polynomials and their zeros , 2007, J. Approx. Theory.

[4]  I. Nenciu Poisson brackets for orthogonal polynomials on the unit circle , 2007 .

[5]  A. Tsiganov,et al.  On the Darboux-Nijenhuis Variables for the Open Toda Lattice ? , 2006, nlin/0701004.

[6]  A. Tsiganov A family of the Poisson brackets compatible with the Sklyanin bracket , 2006, nlin/0612025.

[7]  B. Simon Zeros of OPUC and long time asymptotics of Schur and related flows , 2006, math/0610987.

[8]  D. B. Rolanía,et al.  On the relation between the complex Toda and Volterra lattices , 2006, nlin/0610010.

[9]  B. Simon Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle , 2006, math/0606037.

[10]  B. Simon,et al.  Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.

[11]  B. Simon CMV matrices: Five years after , 2006, math/0603093.

[12]  L. Golinskii Schur flows and orthogonal polynomials on the unit circle , 2005, math/0511269.

[13]  M. J. Cantero,et al.  Measures on the unit circle and unitary truncations of unitary operators , 2005, J. Approx. Theory.

[14]  Леонид Борисович Голинский,et al.  Потоки Шура и ортогональные полиномы на единичной окружности@@@Schur flows and orthogonal polynomials on the unit circle , 2006 .

[15]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[16]  Mourad E. H. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .

[17]  R. Killip,et al.  CMV: The unitary analogue of Jacobi matrices , 2005, math/0508113.

[18]  L. Li Some remarks on CMV matrices and dressing orbits , 2005, math/0507299.

[19]  P. Forrester,et al.  Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices , 2005, math/0505552.

[20]  Helge Holden,et al.  Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation , 2005 .

[21]  B. Simon OPUC on one foot , 2005, math/0502485.

[22]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[23]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[24]  I. Nenciu Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.

[25]  R. Killip,et al.  Matrix models for circular ensembles , 2004, math/0410034.

[26]  H. Holden,et al.  Algebro-Geometric Solutions of a Discrete System Related to the Trigonometric Moment Problem , 2004, math/0408073.

[27]  Quadrature formula and zeros of para-orthogonal polynomials on the unit circle , 2002 .

[28]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[29]  S. Yau Mathematics and its applications , 2002 .

[30]  L. Moral,et al.  Measures and para orthogonal polynomials on the unit circle , 2002 .

[31]  F. Peherstorfer On Toda lattices and orthogonal polynomials , 2001 .

[32]  Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices , 2000, nlin/0006045.

[33]  L. Faybusovich,et al.  On Schur flows , 1999 .

[34]  Percy Deift,et al.  Integrable Hamiltonian systems , 1996 .

[35]  B. Simon Representations of finite and compact groups , 1995 .

[36]  William B. Gragg,et al.  Schur Flows for Orthogonal Hessenberg Matrices , 1993 .

[37]  A. Perelomov The Toda Lattice , 1990 .

[38]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[39]  Carlos Tomei,et al.  Toda flows with infinitely many variables , 1985 .

[40]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[41]  P. Kulish Quantum difference nonlinear Schrödinger equation , 1981 .

[42]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[43]  D. Mumford,et al.  The spectrum of difference operators and algebraic curves , 1979 .

[44]  F. Kako,et al.  Complete Integrability of General Nonlinear Differential-Difference Equations Solvable by the Inverse Method. II , 1979 .

[45]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[46]  I. Krichever ALGEBRAIC CURVES AND NON-LINEAR DIFFERENCE EQUATIONS , 1978 .

[47]  D. Mumford,et al.  An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation , Korteweg deVries equation and related non-linear equations , 1977 .

[48]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[49]  P. Moerbeke,et al.  The spectrum of Jacobi matrices , 1976 .

[50]  伊達 悦朗,et al.  Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice (ソリトンの研究) , 1975 .

[51]  M. Kac,et al.  A complete solution of the periodic Toda problem. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[53]  M. Kac,et al.  On some periodic toda lattices. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[55]  J. Moser Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .

[56]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[57]  J. Baker,et al.  On the existence of ψ-integrals , 1972 .