Poisson brackets of orthogonal polynomials
暂无分享,去创建一个
[1] B. Simon. Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .
[2] I. Nenciu,et al. Multi‐Hamiltonian structure for the finite defocusing Ablowitz‐Ladik equation , 2007, 0706.2428.
[3] M. L. Wong. First and second kind paraorthogonal polynomials and their zeros , 2007, J. Approx. Theory.
[4] I. Nenciu. Poisson brackets for orthogonal polynomials on the unit circle , 2007 .
[5] A. Tsiganov,et al. On the Darboux-Nijenhuis Variables for the Open Toda Lattice ? , 2006, nlin/0701004.
[6] A. Tsiganov. A family of the Poisson brackets compatible with the Sklyanin bracket , 2006, nlin/0612025.
[7] B. Simon. Zeros of OPUC and long time asymptotics of Schur and related flows , 2006, math/0610987.
[8] D. B. Rolanía,et al. On the relation between the complex Toda and Volterra lattices , 2006, nlin/0610010.
[9] B. Simon. Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle , 2006, math/0606037.
[10] B. Simon,et al. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.
[11] B. Simon. CMV matrices: Five years after , 2006, math/0603093.
[12] L. Golinskii. Schur flows and orthogonal polynomials on the unit circle , 2005, math/0511269.
[13] M. J. Cantero,et al. Measures on the unit circle and unitary truncations of unitary operators , 2005, J. Approx. Theory.
[14] Леонид Борисович Голинский,et al. Потоки Шура и ортогональные полиномы на единичной окружности@@@Schur flows and orthogonal polynomials on the unit circle , 2006 .
[15] Rene F. Swarttouw,et al. Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.
[16] Mourad E. H. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .
[17] R. Killip,et al. CMV: The unitary analogue of Jacobi matrices , 2005, math/0508113.
[18] L. Li. Some remarks on CMV matrices and dressing orbits , 2005, math/0507299.
[19] P. Forrester,et al. Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices , 2005, math/0505552.
[20] Helge Holden,et al. Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation , 2005 .
[21] B. Simon. OPUC on one foot , 2005, math/0502485.
[22] Barry Simon,et al. Orthogonal polynomials on the unit circle. Part 1 , 2005 .
[23] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[24] I. Nenciu. Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.
[25] R. Killip,et al. Matrix models for circular ensembles , 2004, math/0410034.
[26] H. Holden,et al. Algebro-Geometric Solutions of a Discrete System Related to the Trigonometric Moment Problem , 2004, math/0408073.
[27] Quadrature formula and zeros of para-orthogonal polynomials on the unit circle , 2002 .
[28] A. Edelman,et al. Matrix models for beta ensembles , 2002, math-ph/0206043.
[29] S. Yau. Mathematics and its applications , 2002 .
[30] L. Moral,et al. Measures and para orthogonal polynomials on the unit circle , 2002 .
[31] F. Peherstorfer. On Toda lattices and orthogonal polynomials , 2001 .
[32] Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices , 2000, nlin/0006045.
[33] L. Faybusovich,et al. On Schur flows , 1999 .
[34] Percy Deift,et al. Integrable Hamiltonian systems , 1996 .
[35] B. Simon. Representations of finite and compact groups , 1995 .
[36] William B. Gragg,et al. Schur Flows for Orthogonal Hessenberg Matrices , 1993 .
[37] A. Perelomov. The Toda Lattice , 1990 .
[38] W. J. Thron,et al. Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .
[39] Carlos Tomei,et al. Toda flows with infinitely many variables , 1985 .
[40] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[41] P. Kulish. Quantum difference nonlinear Schrödinger equation , 1981 .
[42] B. Kostant,et al. The solution to a generalized Toda lattice and representation theory , 1979 .
[43] D. Mumford,et al. The spectrum of difference operators and algebraic curves , 1979 .
[44] F. Kako,et al. Complete Integrability of General Nonlinear Differential-Difference Equations Solvable by the Inverse Method. II , 1979 .
[45] D. H. Griffel,et al. An Introduction to Orthogonal Polynomials , 1979 .
[46] I. Krichever. ALGEBRAIC CURVES AND NON-LINEAR DIFFERENCE EQUATIONS , 1978 .
[47] D. Mumford,et al. An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation , Korteweg deVries equation and related non-linear equations , 1977 .
[48] Sergei Petrovich Novikov,et al. NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .
[49] P. Moerbeke,et al. The spectrum of Jacobi matrices , 1976 .
[50] 伊達 悦朗,et al. Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice (ソリトンの研究) , 1975 .
[51] M. Kac,et al. A complete solution of the periodic Toda problem. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[52] Mark Kac,et al. On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .
[53] M. Kac,et al. On some periodic toda lattices. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[54] Mark J. Ablowitz,et al. Nonlinear differential−difference equations , 1975 .
[55] J. Moser. Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .
[56] H. Flaschka. The Toda lattice. II. Existence of integrals , 1974 .
[57] J. Baker,et al. On the existence of ψ-integrals , 1972 .