A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field

An 8-node quadrilateral plane finite element is developed based on a novel unsymmetric formulation which is characterized by the use of two sets of shape functions, viz., the compatibility enforcing shape functions and completeness enforcing shape functions. The former are chosen to satisfy exactly the minimum inter- as well as intra-element displacement continuity requirements, while the latter are chosen to satisfy all the (linear and higher order) completeness requirements so as to reproduce exactly a quadratic displacement field. Numerical results from test problems reveal that the new element is indeed capable of reproducing exactly a complete quadratic displacement field under all types of admissible mesh distortions. In this respect, the proposed 8-node unsymmetric element emerges to be better than the existing symmetric QUAD8, QUAD8/9, QUAD9, QUAD12 and QUAD16 elements, and matches the performance of the quartic element, QUAD25. For test problems involving a cubic or higher order displacement field, the proposed element yields a solution accuracy that is comparable to or better than that of QUAD8, QUAD8/9 and QUAD9 elements. Furthermore, the element maintains a good accuracy even with the reduced 2× 2 numerical integration. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  T. Hughes Equivalence of Finite Elements for Nearly Incompressible Elasticity , 1977 .

[3]  Robert L. Harder,et al.  Eight nodes or nine , 1992 .

[4]  Fumio Kikuchi,et al.  Modification of the 8-node serendipity element , 1999 .

[5]  Jing Zhang,et al.  Interpolation error estimates of a modified 8-node serendipity finite element , 2000, Numerische Mathematik.

[6]  Giancarlo Sangalli,et al.  Inf-sup testing of upwind methods , 2000 .

[7]  I. Babuska Error-bounds for finite element method , 1971 .

[8]  R. MacNeal,et al.  Finite Elements: Their Design and Performance , 1993 .

[9]  Srinivasan Gopalakrishnan,et al.  Behaviour of isoparametric quadrilateral family of Lagrangian fluid finite elements , 2002 .

[10]  G. Prathap The Finite Element Method in Structural Mechanics , 1993 .

[11]  J. A. Stricklin,et al.  On isoparametricvs linear strain triangular elements , 1977 .

[12]  Jan Bäcklund On isoparametric elements , 1978 .

[13]  J. Z. Zhu,et al.  The finite element method , 1977 .

[14]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[15]  Ivo Babuška,et al.  The Babuška-Brezzi condition and the patch test: an example , 1997 .

[16]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[17]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[18]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[19]  L. Nash Gifford More on distorted isoparametric elements , 1979 .

[20]  K. M. Liew,et al.  Completeness requirements of shape functions for higher order finite elements , 2000 .

[21]  Richard H. MacNeal,et al.  Toward a defect-free four-noded membrane element , 1989 .

[22]  B. Irons,et al.  Engineering applications of numerical integration in stiffness methods. , 1966 .

[23]  K. Bathe,et al.  The inf-sup test , 1993 .

[24]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .