A filter proximal bundle method for nonsmooth nonconvex constrained optimization

A filter proximal bundle algorithm is presented for nonsmooth nonconvex constrained optimization problems. The new algorithm is based on the proximal bundle method and utilizes the improvement function to regularize the constraint. At every iteration by solving a convex piecewise-linear subproblem a trial point is obtained. The process of the filter technique is employed either to accept the trial point as a serious iterate or to reject it as a null iterate. Under some mild and standard assumptions and for every possible choice of a starting point, it is shown that every accumulation point of the sequence of serious iterates is feasible. In addition, there exists at least one accumulation point which is stationary for the improvement function. Finally, some encouraging numerical results show that the proposed algorithm is effective.

[1]  Adil M. Bagirov,et al.  Subgradient Method for Nonconvex Nonsmooth Optimization , 2013, J. Optim. Theory Appl..

[2]  Zhenhai Liu,et al.  A variable metric method for nonsmooth convex constrained optimization , 2006, Appl. Math. Comput..

[3]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[4]  Najmeh Hoseini Monjezi,et al.  A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization , 2019, Comput. Optim. Appl..

[5]  J. Asaadi,et al.  A computational comparison of some non-linear programs , 1973, Math. Program..

[6]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[7]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[8]  Warren Hare,et al.  Best practices for comparing optimization algorithms , 2017, Optimization and Engineering.

[9]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[10]  Claudia A. Sagastizábal,et al.  An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter , 2005, SIAM J. Optim..

[11]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[12]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[13]  Berç Rustem,et al.  An Algorithm for the Inequality-Constrained Discrete Min-Max Problem , 1998, SIAM J. Optim..

[14]  Clóvis C. Gonzaga,et al.  Global Convergence of Filter Methods for Nonlinear Programming , 2008, SIAM J. Optim..

[15]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[16]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[17]  J. Spingarn Submonotone subdifferentials of Lipschitz functions , 1981 .

[18]  Warren Hare,et al.  A Redistributed Proximal Bundle Method for Nonconvex Optimization , 2010, SIAM J. Optim..

[19]  Adil M. Bagirov,et al.  Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations , 2018, J. Glob. Optim..

[20]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[21]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[22]  D. Noll Cutting Plane Oracles to Minimize Non-smooth Non-convex Functions , 2010 .

[23]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[24]  Li-Ping Pang,et al.  A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information , 2018, J. Glob. Optim..

[25]  Adil M. Bagirov,et al.  A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes , 2017, J. Glob. Optim..

[26]  Yang Yang,et al.  Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method , 2014, J. Optim. Theory Appl..

[27]  Claude Lemaréchal,et al.  Convex proximal bundle methods in depth: a unified analysis for inexact oracles , 2014, Math. Program..

[28]  R. Mifflin A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization , 1982 .

[29]  Clóvis C. Gonzaga,et al.  A Globally Convergent Filter Method for Nonlinear Programming , 2003, SIAM J. Optim..

[30]  Warren Hare,et al.  Computing proximal points of nonconvex functions , 2008, Math. Program..

[31]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[32]  S. Nobakhtian,et al.  A new trust region method for nonsmooth nonconvex optimization , 2018 .

[33]  Claudia A. Sagastizábal,et al.  A bundle-filter method for nonsmooth convex constrained optimization , 2008, Math. Program..

[34]  Aris Daniilidis,et al.  Approximate convexity and submonotonicity , 2004 .

[35]  Warren Hare,et al.  A proximal bundle method for nonsmooth nonconvex functions with inexact information , 2015, Computational Optimization and Applications.