Vers un décodage guidé pour la traduction automatique

Recemment, le paradigme du decodage guide a montre un fort potentiel dans le cadre de la reconnaissance automatique de la parole. Le principe est de guider le processus de decodage via l'utilisation de transcriptions auxiliaires. Ce paradigme applique a la traduction automatique per-met d'envisager de nombreuses applications telles que la combinaison de systemes, la traduction multi-sources etc. Cet article presente une approche preliminaire de l'application de ce paradigme a la traduction automatique (TA). Nous proposons d'enrichir le modele log-lineaire d'un systeme primaire de TA avec des mesures de distance relatives a des systemes de TA auxiliaires. Les premiers resultats obtenus sur la tâche de traduction Francais/Anglais issue de la campagne d'evaluation WMT 2011 montrent le potentiel du decodage guide.

[1]  Giuseppe Riccardi,et al.  Computing consensus translation from multiple machine translation systems , 2001, IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01..

[2]  Benjamin Lecouteux,et al.  The LIG English to French machine translation system for IWSLT 2012 , 2012, IWSLT.

[3]  Stephan Vogel,et al.  Combination of Machine Translation Systems via Hypothesis Selection from Combined N-Best Lists , 2008, AMTA 2008.

[4]  Ming Zhou,et al.  Collaborative Decoding: Partial Hypothesis Re-ranking Using Translation Consensus between Decoders , 2009, ACL/IJCNLP.

[5]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[6]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[7]  Richard M. Schwartz,et al.  Combining Outputs from Multiple Machine Translation Systems , 2007, NAACL.

[8]  Chin-Yew Lin,et al.  ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation , 2004, COLING.

[9]  Benjamin Lecouteux,et al.  The LIGA (LIG/LIA) Machine Translation System for WMT 2011 , 2011, WMT@EMNLP.

[10]  Georges Linarès,et al.  Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[11]  Georges Linarès,et al.  Integrating imperfect transcripts into speech recognition systems for building high-quality corpora , 2012, Comput. Speech Lang..

[12]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[13]  Benjamin Lecouteux,et al.  The LIGA machine translation system for WMT 2011 , 2011 .

[14]  Richard M. Schwartz,et al.  Improved Word-Level System Combination for Machine Translation , 2007, ACL.

[15]  Philipp Koehn,et al.  Margin Infused Relaxed Algorithm for Moses , 2011, Prague Bull. Math. Linguistics.

[16]  Loïc Barrault,et al.  Many , 2020, Definitions.

[17]  Stephan Vogel,et al.  Parallel Implementations of Word Alignment Tool , 2008, SETQALNLP.

[18]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[19]  Miles Osborne,et al.  Statistical Machine Translation , 2010, Encyclopedia of Machine Learning and Data Mining.