The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling

Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk ∼1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.

[1]  U. John,et al.  Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case‐control sample , 2009, International journal of cancer.

[2]  Karin M. Fredrikson,et al.  Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers , 2008, Human Genetics.

[3]  D. Sassoon,et al.  Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. , 1998, Development.

[4]  Jocelyn Kaiser,et al.  Genome-wide association. Closing the net on common disease genes. , 2007, Science.

[5]  Julian Peto,et al.  A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3 , 2008, Nature Genetics.

[6]  H. Clevers,et al.  The Intestinal Wnt/TCF Signature. , 2007, Gastroenterology.

[7]  Jacek Majewski,et al.  Genome-wide analysis of transcript isoform variation in humans , 2008, Nature Genetics.

[8]  D. Kerr,et al.  Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk , 2008, Nature Genetics.

[9]  Andrew P McMahon,et al.  Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. , 2003, Genes & development.

[10]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[11]  Oliver Sieber,et al.  A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.

[12]  G. Casey,et al.  A Common 8q24 Variant and the Risk of Colon Cancer: A Population-Based Case-Control Study , 2008, Cancer Epidemiology Biomarkers & Prevention.

[13]  I. Deary,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21 , 2008, Nature Genetics.

[14]  Jussi Taipale,et al.  High-throughput assay for determining specificity and affinity of protein-DNA binding interactions , 2006, Nature Protocols.

[15]  F. Kolligs,et al.  Wnt signaling as a therapeutic target for cancer. , 2007, Methods in molecular biology.

[16]  Jocelyn Kaiser,et al.  Closing the Net on Common Disease Genes , 2007, Science.

[17]  E. Ukkonen,et al.  Genome-wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor Binding Affinity , 2006, Cell.

[18]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[19]  Carmen Birchmeier,et al.  Requirement for beta-catenin in anterior-posterior axis formation in mice. , 2000 .

[20]  Esko Ukkonen,et al.  Locating potential enhancer elements by comparative genomics using the EEL software , 2006, Nature Protocols.

[21]  R. Hayes,et al.  Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. , 2008, Human molecular genetics.

[22]  Tony Fletcher,et al.  Sequence variant on 8q24 confers susceptibility to urinary bladder cancer , 2008, Nature Genetics.

[23]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[24]  L. Aaltonen,et al.  Population-based molecular detection of hereditary nonpolyposis colorectal cancer. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.

[26]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[27]  L. Aaltonen,et al.  Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. , 1998, The New England journal of medicine.

[28]  Julie A. Wilkins,et al.  Myc deletion rescues Apc deficiency in the small intestine , 2007, Nature.

[29]  K. Taylor,et al.  Genome-Wide Association , 2007, Diabetes.

[30]  Gudmundur A. Thorisson,et al.  The International HapMap Project Web site. , 2005, Genome research.

[31]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[32]  Paola Briata,et al.  Identification of a Wnt/Dvl/β-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development , 2002, Cell.

[33]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[34]  J. Potter,et al.  Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. , 2007, Cancer research.

[35]  David Reich,et al.  A common genetic risk factor for colorectal and prostate cancer , 2007, Nature Genetics.

[36]  J. Williams,et al.  IN A POPULATION-BASED CASE-CONTROL STUDY , 2001 .

[37]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[38]  Carmen Birchmeier,et al.  Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice , 2000, The Journal of cell biology.

[39]  C. Carlberg,et al.  Selective use of multiple vitamin D response elements underlies the 1 α,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene , 2007, Nucleic acids research.

[40]  Christopher A. Haiman,et al.  The 8q24 cancer risk variant rs6983267 demonstrates long-range interaction with MYC in colorectal cancer , 2009, Nature Genetics.

[41]  Pär Stattin,et al.  Cumulative association of five genetic variants with prostate cancer. , 2008, The New England journal of medicine.

[42]  J. Taipale,et al.  Patched acts catalytically to suppress the activity of Smoothened , 2002, Nature.

[43]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[44]  G. Evan,et al.  Modelling Myc inhibition as a cancer therapy , 2008, Nature.

[45]  Steven Gallinger,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24 , 2007, Nature Genetics.

[46]  S. McWeeney,et al.  Serial analysis of chromatin occupancy identifies β-catenin target genes in colorectal carcinoma cells , 2007, Proceedings of the National Academy of Sciences.

[47]  R. Kemler,et al.  Functional analysis of cis‐regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[49]  Michael Levine,et al.  Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen , 1993, Cell.

[50]  Sampsa Hautaniemi,et al.  Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. , 2008, Cancer research.

[51]  W. Fu,et al.  β-Catenin signaling is required for neural differentiation of embryonic stem cells , 2004 .

[52]  S. Gruber,et al.  Genetic variation in 8q24 associated with risk of colorectal cancer , 2007, Cancer biology & therapy.

[53]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[54]  Steven Gallinger,et al.  Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.

[55]  R. Eeles,et al.  Genome-wide association studies in cancer. , 2008, Human molecular genetics.

[56]  J. Willson,et al.  Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis , 2007, Molecular Cancer Therapeutics.

[57]  M. Matise,et al.  Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. , 2006, Developmental cell.

[58]  J. Claverie,et al.  The significance of digital gene expression profiles. , 1997, Genome research.

[59]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[60]  L. Aaltonen,et al.  Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis , 2007, Oncogene.