Bayesian estimation and inference for generalised partial linear models using shape-restricted splines

A Bayesian approach to generalised partial linear regression models is proposed, where regression functions are modelled nonparametrically using regression splines, with assumptions about shape and smoothness. The knots may be modelled as fixed or free, incorporating a reversible-jump Markov chain Monte Carlo algorithm for the latter. The modelling framework along with vague prior distributions provides more flexibility compared with other Bayesian constrained smoothers; further, the method is simpler, more intuitive, easier to implement, and computationally faster. Inference concerning parametrically modelled covariates can be accomplished using approximate marginal distributions, with standard Bayes model selection methods for more general inference. Simulations show that the inference methods have desirable Bayesian and frequentist properties. In particular, these methods often perform similarly to standard parametric methods when the parametric assumptions are met and are superior when the assumptions are violated. The R code to implement the methods described here is available at www.stat.colostate.edu/~meyer/code.htm.

[1]  S. Walker,et al.  A Bayesian approach to non‐parametric monotone function estimation , 2009 .

[2]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[3]  S. J. Arnold,et al.  ON THE MEASUREMENT OF NATURAL AND SEXUAL SELECTION: THEORY , 1984, Evolution; international journal of organic evolution.

[4]  Matthew S. Johnson,et al.  Modeling dichotomous item responses with free-knot splines , 2007, Comput. Stat. Data Anal..

[5]  Mary C. Meyer INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES , 2008, 0811.1705.

[6]  Purushottam W. Laud,et al.  Predictive Variable Selection in Generalized Linear Models , 2002 .

[7]  S. J. Arnold,et al.  ON THE MEASUREMENT OF NATURAL AND SEXUAL SELECTION: APPLICATIONS , 1984, Evolution; international journal of organic evolution.

[8]  K. Mengersen,et al.  Bayesian Nonparametric Modeling Using Mixtures of Triangular Distributions , 2001, Biometrics.

[9]  C. Holmes,et al.  Generalized monotonic regression using random change points , 2003, Statistics in medicine.

[10]  P. Hall,et al.  NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .

[11]  F. Ramsey,et al.  The statistical sleuth : a course in methods of data analysis , 2002 .

[12]  Andreas Brezger,et al.  Monotonic Regression Based on Bayesian P–Splines , 2008 .

[13]  Purushottam W. Laud,et al.  Nonparametric Bayesian bioassay with prior constraints on the shape of the potency curve , 1993 .

[14]  B. Mallick,et al.  Generalized Nonlinear Modeling With Multivariate Free-Knot Regression Splines , 2003 .

[15]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[16]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[17]  Brian Neelon,et al.  Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.

[18]  Audris Mockus,et al.  A nonparametric Bayes method for isotonic regression , 1995 .

[19]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[20]  Katja Ickstadt,et al.  Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis , 2009, Biometrics.

[21]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[22]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[23]  G. Tutz,et al.  Generalized Smooth Monotonic Regression in Additive Modeling , 2007 .

[24]  Xiao Wang,et al.  Bayesian Free-Knot Monotone Cubic Spline Regression , 2008 .

[25]  Valen E. Johnson,et al.  Bayes factors based on test statistics , 2005 .

[26]  E. Mammen,et al.  A General Projection Framework for Constrained Smoothing , 2001 .

[27]  Günter Heimann,et al.  Non‐parametric estimators of a monotonic dose–response curve and bootstrap confidence intervals , 2003, Statistics in medicine.

[28]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[29]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[30]  D. Barr,et al.  Mean and Variance of Truncated Normal Distributions , 1999 .

[31]  Andreas Brezger,et al.  Monotonic Regression Based on Bayesian P-Splines: An Application to Estimating Price Response Functions from Store-Level Scanner Data , 2008 .

[32]  Mary J. Lindstrom,et al.  Bayesian estimation of free-knot splines using reversible jumps , 2002, Comput. Stat. Data Anal..

[33]  Christine Thomas-Agnan,et al.  Smoothing Splines and Shape Restrictions , 1999 .

[34]  Christine Thomas-Agnan,et al.  A shape constrained smoother: simulation study , 1995 .

[35]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[36]  Berwin A. Turlach,et al.  Shape constrained smoothing using smoothing splines , 2005, Comput. Stat..

[37]  T. Stukel,et al.  Determinants of plasma levels of beta-carotene and retinol. Skin Cancer Prevention Study Group. , 1989, American journal of epidemiology.

[38]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[39]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .