Nonlinear Kalman Filtering With Divergence Minimization

We consider the nonlinear Kalman filtering problem using Kullback–Leibler (KL) and <inline-formula> <tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula>-divergence measures as optimization criteria. Unlike linear Kalman filters, nonlinear Kalman filters do not have closed form Gaussian posteriors because of a lack of conjugacy due to the nonlinearity in the likelihood. In this paper, we propose novel algorithms to approximate this posterior by optimizing the forward and reverse forms of the KL divergence, as well as the <inline-formula> <tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula>-divergence that contains these two as limiting cases. Unlike previous approaches, our algorithms do not make approximations to the divergences being optimized, but use Monte Carlo techniques to derive unbiased algorithms for direct optimization. We assess performance on radar and sensor tracking, and options pricing, showing general improvement over the extended, unscented, and ensemble Kalman filters, as well as competitive performance with particle filtering.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Azzedine Boukerche,et al.  Localization systems for wireless sensor networks , 2007, IEEE Wireless Communications.

[3]  Patrick Pérez,et al.  Variational inference for visual tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[5]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[6]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[8]  T. Heskes,et al.  Expectation propagation for approximate inference in dynamic bayesian networks , 2002, UAI 2002.

[9]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[10]  Mahesan Niranjan Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches , 1996, NIPS.

[11]  Kyle J. DeMars,et al.  Erratum: Minimization of the Kullback–Leibler Divergence for Nonlinear Estimation , 2016 .

[12]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[13]  Tom Schaul,et al.  Stochastic search using the natural gradient , 2009, ICML '09.

[14]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[15]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Archana Bharathidasan,et al.  Sensor Networks : An Overview , 2002 .

[18]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[19]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[20]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[21]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[22]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[23]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[24]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[25]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[26]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[27]  Xiaodong Wang,et al.  Quasi-Monte Carlo filtering in nonlinear dynamic systems , 2006, IEEE Trans. Signal Process..

[28]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[29]  T. Minka Power EP , 2004 .

[30]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[31]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[32]  Sham M. Kakade,et al.  A Linear Dynamical System Model for Text , 2015, ICML.

[33]  Hichem Snoussi,et al.  Distributed Variational Filtering for Simultaneous Sensor Localization and Target Tracking in Wireless Sensor Networks , 2012, IEEE Transactions on Vehicular Technology.

[34]  John W. Paisley,et al.  A Collaborative Kalman Filter for Time-Evolving Dyadic Processes , 2014, 2014 IEEE International Conference on Data Mining.

[35]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[36]  Vesselin P. Jilkov,et al.  Survey of maneuvering target tracking: III. Measurement models , 2001 .

[37]  Daniel Hernández-Lobato,et al.  Black-Box Alpha Divergence Minimization , 2015, ICML.

[38]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.