X-ray Study of the Liquid Potassium Surface: Structure and Capillary Wave Excitations

We present x-ray reflectivity and diffuse scattering measurements from the liquid surface of pure potassium. They strongly suggest the existence of atomic layering at the free surface of a pure liquid metal with low surface tension. Prior to this study, layering was observed only for metals like Ga, In, and Hg, the surface tensions of which are five- to sevenfold higher than that of potassium, and hence closer to inducing an ideal ``hard wall'' boundary condition. The experimental result requires quantitative analysis of the contribution to the surface scattering from thermally excited capillary waves. Our measurements confirm the predicted form for the differential cross section for diffuse scattering, $d\ensuremath{\sigma}/d\ensuremath{\Omega}\ensuremath{\sim}{1/q}_{\mathrm{xy}}^{2\ensuremath{-}\ensuremath{\eta}}$ where $\ensuremath{\eta}{=k}_{B}{\mathrm{Tq}}_{z}^{2}/2\ensuremath{\pi}\ensuremath{\gamma},$ over a range of \ensuremath{\eta} and ${q}_{\mathrm{xy}}$ that is larger than any previous measurement. The partial measure of the surface structure factor that we obtained agrees with computer simulations and theoretical predictions.

[1]  Cambridge,et al.  Surface structure of liquid metals and the effect of capillary waves: X-ray studies on liquid indium , 2004, cond-mat/0406582.

[2]  P. Tarazona,et al.  Low melting temperature and liquid surface layering for pair potential models , 2002 .

[3]  P. Tarazona,et al.  Layering at free liquid surfaces. , 2001, Physical review letters.

[4]  J. Soler,et al.  Surface layering and local structure in liquid surfaces , 2001 .

[5]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics , 2001 .

[6]  P. Pershan Effects of thermal roughness on X-ray studies of liquid surfaces , 2000 .

[7]  B. Ocko,et al.  Microscopic Surface Structure of Liquid Alkali Metals , 2000, cond-mat/0412109.

[8]  Detlef-M. Smilgies,et al.  OBSERVATION OF CAPILLARY WAVES ON LIQUID THIN FILMS FROM MESOSCOPIC TO ATOMIC LENGTH SCALES , 1999 .

[9]  S. Mochrie,et al.  Interfacial roughness in a near-critical binary fluid mixture: X-ray reflectivity and near-specular diffuse scattering , 1999 .

[10]  Seungju M. Yu,et al.  X-Ray Measurements of Noncapillary Spatial Fluctuations from a Liquid Surface , 1998 .

[11]  B. Ocko,et al.  II. Surface and interfacial phenomena: Surface phases in binary liquid metal alloys: An X‐ray study , 1998 .

[12]  S. Rice,et al.  Structure of the liquid-vapor interface of a metal from a simple model potential: Corresponding states of the alkali metals , 1998 .

[13]  M. J. Regan,et al.  Surface layering in liquid gallium: An X-ray reflectivity study. , 1995, Physical review letters.

[14]  M. J. Regan,et al.  X-ray reflectivity measurements of surface layering in liquid mercury. , 1995, Physical review letters.

[15]  Chacón,et al.  Role of the surface electronic response function on treatments of the liquid-vapor interface of alkali metals. , 1994, Physical review. B, Condensed matter.

[16]  Wu,et al.  X-ray reflectivity study of thermal capillary waves on liquid surfaces. , 1994, Physical review letters.

[17]  M. Iwamatsu,et al.  Evidence of an oscillatory density profile in liquid metal surfaces: an asymptotic solution , 1992 .

[18]  Huang,et al.  X-ray-scattering study of capillary-wave fluctuations at a liquid surface. , 1991, Physical review letters.

[19]  Schwartz,et al.  Thermal diffuse x-ray-scattering studies of the water-vapor interface. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[20]  Sirota,et al.  X-ray and neutron scattering from rough surfaces. , 1988, Physical review. B, Condensed matter.

[21]  S. Rice,et al.  Self‐consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. I. Longitudinal and transverse density distributions in the liquid–vapor interface of a one‐component system , 1987 .

[22]  H. Borgstedt,et al.  Applied Chemistry of the Alkali Metals , 1987 .

[23]  E. Chacón,et al.  A theory for liquid metal surface tension , 1984 .

[24]  J. Goodisman,et al.  Density functional calculations for liquid metal surfaces , 1983 .

[25]  F. Christensen,et al.  Smectic-A Order at the Surface of a Nematic Liquid Crystal: Synchrotron X-Ray Diffraction , 1982 .

[26]  M. Hasegawa,et al.  Pseudopotential perturbation theory for the surface tension of liquid metals , 1982 .

[27]  R. Evans,et al.  A self-consistent theory of inhomogeneous liquid metals: Calculations of the electron and ion density profiles and the liquid-vapour surface tension of the alkali metals , 1981 .

[28]  Dieter Forster,et al.  Hydrodynamic fluctuations, broken symmetry, and correlation functions , 1975 .

[29]  Paul C. Martin,et al.  Unified Hydrodynamic Theory for Crystals, Liquid Crystals, and Normal Fluids , 1972 .

[30]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[31]  C. C. Addison The Chemistry of the Liquid Alkali Metals , 1984 .

[32]  G. Saville,et al.  Computer simulation of a gas–liquid surface. Part 1 , 1977 .