A Review of Hydrogen/Halogen Flow Cells

Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for research and development of related redox-flow-battery systems and other electrochemical technologies.

[1]  R. C. Knechtli,et al.  Zinc‐Bromine Secondary Battery , 1977 .

[2]  N. Lewis,et al.  Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays , 2015 .

[3]  Michael J. Aziz,et al.  A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metal content catalyst , 2012, 1206.2883.

[4]  P. Popat,et al.  CAPACITY OF THE ELECTRICAL DOUBLE LAYER AND ADSORPTION AT POLARIZED PLATINUM ELECTRODES , 1958 .

[5]  Espen Sandnes,et al.  Evaluation of concepts for hydrogen – chlorine fuel cells , 2006 .

[6]  M. Mastragostino,et al.  Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes , 1985 .

[7]  Martin Z Bazant,et al.  Membrane-less hydrogen bromine flow battery , 2013, Nature Communications.

[8]  J. Jorné,et al.  The zinc-chlorine battery: half-cell overpotential measurements , 1979 .

[9]  D. Ambrose,et al.  The vapour pressure of chlorine , 1979 .

[10]  J. McBreen,et al.  Transport Properties of Nafion Membranes in Electrochemically Regenerative Hydrogen/Halogen Cells , 1979 .

[11]  Seung-Hyeon Moon,et al.  A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective , 2013 .

[12]  R. Savinell,et al.  Simulation studies on the performance of the hydrogen electrode bonded to proton exchange membranes in the hydrogenbromine fuel cell , 1989 .

[13]  Xindong Wang,et al.  Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery , 2008 .

[14]  Adam Z. Weber,et al.  Optimization of the iron-ion/hydrogen redox flow cell with iron chloride catholyte salt , 2014 .

[15]  Mike L. Perry,et al.  The Influence of Electrode and Channel Configurations on Flow Battery Performance , 2014 .

[16]  J. McBreen,et al.  An electrochemically regenerative hydrogen-chlorine energy storage system: electrode kinetics and cell performance , 1980 .

[17]  M. Alkan,et al.  Solubility of chlorine in aqueous hydrochloric acid solutions. , 2005, Journal of hazardous materials.

[18]  G. Gebel,et al.  A SANS determination of the influence of external conditions on the nanostructure of nafion membrane , 2001 .

[19]  J. Donelson,et al.  The Thermodynamics of Hydrobromic Acid in Aqueous Solution from Electromotive Force Measurements , 1936 .

[20]  G. H. Schuetz Hydrogen producing cycles using electricity and heat. Hydrogen halide cycles: electrolysis of HBr , 1977 .

[21]  Mark W. Verbrugge,et al.  Analysis of Promising Perfluorosulfonic Acid Membranes for Fuel‐Cell Electrolytes , 1990 .

[22]  G. Natta,et al.  Thermodynamics of the Cl2/Cl−/Cl3− system in aqueous solution , 1969 .

[23]  M. W. Breiter,et al.  Voltammetric study of halide ion adsorption on platinum in perchloric acid solutions , 1963 .

[24]  S. Srinivasan,et al.  Optimization of an electrochemical hydrogen-chlorine energy storage system , 1981 .

[25]  Kevin G. Gallagher,et al.  Transport Property Requirements for Flow Battery Separators , 2016 .

[26]  J. Fischer,et al.  The Vapor Pressure of Bromine from 24 to 116°1 , 1955 .

[27]  E. Balko Heat rejection and thermal efficiency in model hydrogen-halogen fuel cell systems , 1981 .

[28]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[29]  T. Zawodzinski,et al.  Composition and Conductivity of Membranes Equilibrated with Solutions of Sulfuric Acid and Vanadyl Sulfate , 2013 .

[30]  Trung Van Nguyen,et al.  Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  B. Børresen,et al.  H2/Cl2 fuel cell for co-generation of electricity and HCl , 2003 .

[32]  A. Weber,et al.  Role of Mechanical Factors in Controlling the Structure–Function Relationship of PFSA Ionomers , 2012 .

[33]  Michael J. Aziz,et al.  Electricity storage for intermittent renewable sources , 2012 .

[34]  S. Jayanti,et al.  Hydrodynamic analysis of flow fields for redox flow battery applications , 2014, Journal of Applied Electrochemistry.

[35]  Michael J. Aziz,et al.  Model of Performance of a Regenerative Hydrogen Chlorine Fuel Cell for Grid-Scale Electrical Energy Storage , 2011, ECS Transactions.

[36]  A. Laconti,et al.  Halogen acid electrolysis in solid polymer electrolyte cells , 1981 .

[37]  J. Weidner,et al.  Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl I. Characterization of Diffusion and Electro-osmotic Drag , 2002 .

[38]  F. Will Bromine Diffusion Through Nafion® Perfluorinated Ion Exchange Membranes , 1979 .

[39]  V. S. Bagotzky,et al.  Adsorption of anions on smooth platinum electrodes , 1970 .

[40]  G. Barna,et al.  Lifetime studies in H/sub 2//Br/sub 2/ fuel cells , 1984 .

[41]  C Braun,et al.  An electrochemically regenerative hydrogen—chlorine energy storage system for electric utilities , 1977 .

[42]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[43]  E. Peled,et al.  Study of hydrogen redox reactions on platinum nanoparticles in concentrated HBr solutions , 2009 .

[44]  A. Heintz,et al.  Diffusion coefficients of Br2 in cation exchange membranes , 1996 .

[45]  Y. Tolmachev,et al.  Hydrogen-halogen electrochemical cells: A review of applications and technologies , 2014, Russian Journal of Electrochemistry.

[46]  E. Peled,et al.  High-power H2/Br2 fuel cell , 2006 .

[47]  Bryan D. Sawyer,et al.  Impact of electrode separator on performance of a zinc/alkaline/manganese dioxide packed-bed electrode flow battery , 2011 .

[48]  M. Skyllas-Kazacos,et al.  Review of material research and development for vanadium redox flow battery applications , 2013 .

[49]  Peter S. Fedkiw,et al.  A mathematical model for the iron/chromium redox battery , 1984 .

[50]  H. Groult Electrochemistry of fluorine production , 2003 .

[51]  H. Gasteiger,et al.  Bromide adsorption on Pt(100): rotating ring-Pt(100) disk electrode and surface X-ray scattering measurements , 1996 .

[52]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[53]  R. White,et al.  The Effect of the Tribromide Complex Reaction on the Oxidation/Reduction Current of the Br2/Br– Electrode , 1987 .

[54]  A. Kucernak,et al.  Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. , 2013, Physical chemistry chemical physics : PCCP.

[55]  S. Litster,et al.  Spatially Resolved Modeling of Electric Double Layers and Surface Chemistry for the Hydrogen Oxidation Reaction in Water-Filled Platinum–Carbon Electrodes , 2012 .

[56]  D. Chin,et al.  A Hydrogen‐Bromine Cell for Energy Storage Applications , 1980 .

[57]  Venkat Srinivasan,et al.  Optimization and Analysis of High‐Power Hydrogen/Bromine‐Flow Batteries for Grid‐Scale Energy Storage , 2013 .

[58]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[59]  B. Lestriez,et al.  Manufacturing of LiNi0.5Mn1.5O4 Positive Composite Electrodes with Industry-Relevant Surface Capacities for Lithium Ion-Cells , 2015 .

[60]  M. Noel,et al.  Platinum-iridium bimetal catalyst-based porous carbon electrodes for H2Cl2 fuel cells , 1993 .

[61]  A. Mel'man,et al.  A Direct Methanol Fuel Cell Based on a Novel Low‐Cost Nanoporous Proton‐Conducting Membrane , 1999 .

[62]  Mike L. Perry,et al.  The Influence of Electric Field on Crossover in Redox-Flow Batteries , 2016 .

[63]  R. Savinell,et al.  Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte] , 1988 .

[64]  J. Kosek,et al.  Advanced hydrogen electrode for a hydrogen-bromine battery , 1988 .

[65]  S. Srinivasan,et al.  An Electrochemically Regenerative Hydrogen‐Chlorine Energy Storage System A Study of Mass and Heat Balances , 1979 .

[66]  T. Nguyen,et al.  Advanced Hydrogen-Bromine Flow Batteries with Improved Efficiency, Durability and Cost , 2016 .

[67]  Nirala Singh,et al.  Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery , 2015 .

[68]  T. Nguyen,et al.  A 1D Mathematical Model of a H2/Br2 Fuel Cell , 2013 .

[69]  Trung Van Nguyen,et al.  Optimization of electrode characteristics for the Br2/H2 redox flow cell , 2014, Journal of Applied Electrochemistry.

[70]  Venkat Srinivasan,et al.  High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage , 2012 .

[71]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[72]  J. Jorné,et al.  Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions , 2007 .

[73]  M. Perry,et al.  Advanced Redox-Flow Batteries: A Perspective , 2016 .

[74]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[75]  J. D. Luttmer,et al.  Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter , 1985 .

[76]  J. Kim,et al.  The Kinetics of a Chlorine Graphite Electrode in the Zinc‐Chlorine Battery , 1977 .

[77]  Aleksandar Kojic,et al.  Flow simulation and analysis of high-power flow batteries , 2015 .

[78]  D. A. Palmer,et al.  Thermodynamics of tri- and pentabromide anions in aqueous solution , 1986 .

[79]  E. Peled,et al.  FUEL CELLS – EXPLORATORY FUEL CELLS | Hydrogen–Bromine Fuel Cells , 2009 .

[80]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[81]  Jérôme Dillet,et al.  Characterization of polymer electrolyte Nafion membranes: Influence of temperature, heat treatment and drying protocol on sorption and transport properties , 2012 .

[82]  Trung Van Nguyen,et al.  Performance Evaluation of a Regenerative Hydrogen-Bromine Fuel Cell , 2012 .

[83]  J. Weidner,et al.  Analysis of a gas-phase Br2–H2 redox flow battery , 2011 .

[84]  F. Castellano,et al.  Charge Recombination to Oxidized Iodide in Dye-Sensitized Solar Cells , 2011 .

[85]  Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts , 2013, Journal of Applied Electrochemistry.

[86]  R. W. Ramette,et al.  Triiodide ion formation equilibrium and activity coefficients in aqueous solution , 1984 .

[87]  Venkat Srinivasan,et al.  Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid‐Scale Energy Storage , 2015 .

[88]  Daniel A. Steingart,et al.  Zinc morphology in zinc-nickel flow assisted batteries and impact on performance , 2011 .

[89]  E. Ishii,et al.  The Corrosion Behavior of Tantalum and Niobium in Hydrobromic Acid Solutions , 1986 .

[90]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[91]  G. H. Schuetz,et al.  Electrolysis of hydrobromic acid , 1980 .

[92]  S. Nakazawa,et al.  Corrosion Behavior of Metals in Flowing Ar-42.6%O2-14.7%Br2 Gas Mixture at 700°C , 2006 .

[93]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[94]  Werner Glass,et al.  Performance of Hydrogen-Bromine Fuel Cells , 1969 .

[95]  T. Nguyen,et al.  Comparison of Acid and Alkaline Hydrogen-Bromine Fuel Cell Systems , 2014 .

[96]  T. Springer,et al.  Dual-Pathway Kinetic Equation for the Hydrogen Oxidation Reaction on Pt Electrodes , 2006 .

[97]  A. Minor,et al.  Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography. , 2015, ACS macro letters.

[98]  S. Bates,et al.  THE VAPOR PRESSURES AND FREE ENERGIES OF THE HYDROGEN HALIDES IN AQUEOUS SOLUTION; THE FREE ENERGY OF FORMATION OF HYDROGEN CHLORIDE. , 1919 .

[99]  R. Wycisk,et al.  Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells , 2015 .

[100]  K. Scott,et al.  A computational simulation of a hydrogen/chlorine single fuel cell , 2006 .

[101]  Frank C. Walsh,et al.  Developments in the soluble lead-acid flow battery , 2010 .

[102]  B. Yi,et al.  The characterization of graphite felt electrode with surface modification for H2/Br2 fuel cell , 2013 .

[103]  E. McFarland,et al.  A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr , 2015 .

[104]  J. Weidner,et al.  Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer , 2010 .

[105]  Kyu Taek Cho,et al.  Structural and transport properties of Nafion in hydrobromic-acid solutions , 2013 .

[106]  F. Mitlitsky,et al.  Regenerative Fuel Cell Systems , 1998 .

[107]  Everett B. Anderson,et al.  A high performance hydrogen/chlorine fuel cell for space power applications , 1994 .

[108]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[109]  Y. Koyama,et al.  Recovery of electric power by direct chlorination of hydrogen or hydrocarbons in a high temperature fuel cell , 1974 .

[110]  C. Ponce de León,et al.  An undivided zinc–cerium redox flow battery operating at room temperature (295 K) , 2011 .

[111]  S. Iwasa,et al.  A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application , 2002 .

[112]  T. Nguyen,et al.  A Comprehensive Study of an Acid-Based Reversible H2-Br2 Fuel Cell System , 2015 .

[113]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[114]  Zhenguo Yang,et al.  A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte , 2011 .

[115]  A. Mel'man,et al.  A Novel Proton‐Conducting Membrane , 1999 .