SAGA User Manual 2.0: an inversion software package

The purpose of many experiments is to identify environmental parameters which, when used as input to a forward model, accurately model the observed data. It is also useful to have some indication of the uncertainty of the estimated parameters. SAGA is a software package that helps the user determine the best set of parameters to match a given data set. At present, the package consists of seven modules, one for each forward model. The forward codes are: OAST (wavenumber integration transmission loss model), OAST (wavenumber integration reflection coefficients model), SNAP (normal modes), SNAPRD (adiabatic normal modes), POPP (normal mode reverberation model), PROSIM (broadband adiabatic normal modes), and TPEM (tropospheric parabolic equation). Several types of observed data can be used in these inversions: single or multi-frequency pressure on a vertical array, coherent or incoherent transmission loss, reflection coefficients, reverberation data, or tropospheric electromagnetic data. For any parameter estimation problem the issue of error assessment must be addressed. In SAGA it i s addressed by estimating a posteriori distributions. The word SAGA stems from Icelandic and simply means a long story, usually from the middle ages. It tends to go on forever. Scientifically it stands for Seismo-Acoustic inversion using Genetic Algorithms.

[1]  P. Gerstoft,et al.  Ocean acoustic inversion with estimation of a posteriori probability distributions , 1998 .

[2]  Johann F. Böhme,et al.  Multiple testing for seismic data using bootstrap , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  L. Ingber Very fast simulated re-annealing , 1989 .

[4]  Evan K. Westwood,et al.  A normal mode model for acousto‐elastic ocean environments , 1996 .

[5]  Sergio M. Jesus,et al.  ESTIMATING GEOACOUSTIC BOTTOM PROPERTIES FROM TOWED ARRAY DATA , 1996 .

[6]  Waveform inversion for the geoacoustic parameters of the ocean bottom , 1992 .

[7]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[8]  E. Shang Source depth estimation in waveguides , 1984 .

[9]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[10]  H. Roussel,et al.  Prediction from wrong models: the Kriging approach , 1996 .

[11]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[12]  Peter Gerstoft,et al.  GLOBAL INVERSION BY GENETIC ALGORITHMS FOR BOTH SOURCE POSITION AND ENVIRONMENTAL PARAMETERS , 1994 .

[13]  Michael B. Porter,et al.  THE MATCHED FIELD PROCESSING BENCHMARK PROBLEMS , 1994 .

[14]  Peter Gerstoft,et al.  Electromagnetic matched-field processing: basic concepts and tropospheric simulations , 1997 .

[15]  A. Tolstoy,et al.  Matched Field Processing for Underwater Acoustics , 1992 .

[16]  Stan E. Dosso,et al.  Estimation of ocean-bottom properties by matched-field inversion of acoustic field data , 1993 .

[17]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[18]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[19]  A. E. Barrios,et al.  Parabolic equation modeling in horizontally inhomogeneous environments , 1992 .

[20]  W A Kuperman,et al.  Focalization: environmental focusing and source localization. , 1991, The Journal of the Acoustical Society of America.

[21]  C. H. Harrison,et al.  A simple relationship between frequency and range averages for broadband sonar , 1995 .

[22]  Georges Bienvenu,et al.  Tuning genetic algorithms for underwater acoustics using a priori statistical information , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[23]  Dale D. Ellis,et al.  A SHALLOW-WATER NORMAL-MODE REVERBERATION MODEL , 1995 .

[24]  P. Gerstoft,et al.  Inversion for geometric and geoacoustic parameters in shallow water: Experimental results , 1995 .

[25]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[26]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[27]  Peter Gerstoft,et al.  Inversion of broad-band multitone acoustic data from the YELLOW SHARK summer experiments , 1996 .

[28]  Andrea Caiti,et al.  Estimation of shear wave velocity in shallow marine sediments , 1994 .

[29]  Scott Levinson,et al.  An efficient and robust method for underwater acoustic normal mode computations , 1994 .

[30]  A. Barrios A terrain parabolic equation model for propagation in the troposphere , 1994 .

[31]  Christoph F. Mecklenbräuker,et al.  F-test in matched field processing: identifying multimode propagation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.