The three-dimensional Ising spin glass in an external magnetic field: the role of the silent majority

We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards–Anderson spin glass in a field, using the Janus computer. A traditional analysis shows no signs of a phase transition. However, we encounter dramatic fluctuations in the behaviour of the model: averages over all the data only describe the behaviour of a small fraction of the data. Therefore, we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where some of the measurements behave as the average, while the majority show signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.

[1]  M. Baity-Jesi,et al.  Phase transition in three-dimensional Heisenberg spin glasses with strong random anisotropies through a multi-GPU parallelization , 2013, 1309.1599.

[2]  F Ricci-Tersenghi,et al.  Dynamical transition in the D=3 Edwards-Anderson spin glass in an external magnetic field. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Parisi,et al.  Critical parameters of the three-dimensional Ising spin glass , 2013, 1310.2910.

[4]  L. A. Fernandez,et al.  Temperature chaos in 3D Ising spin glasses is driven by rare events , 2013, 1307.2361.

[5]  Christopher J. Fullerton,et al.  The Growing Correlation Length in Glasses , 2013, 1304.4420.

[6]  G. Parisi,et al.  Long-range random-field Ising model: Phase transition threshold and equivalence of short and long ranges , 2013 .

[7]  Helmut G. Katzgraber,et al.  Spin glasses in a field: Three and four dimensions as seen from one space dimension , 2012, 1211.7297.

[8]  M. .. Moore,et al.  Origin of the growing length scale in M-p-spin glass models. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  A. Young,et al.  Correspondence between long-range and short-range spin glasses , 2012, 1207.7014.

[10]  Denis Navarro,et al.  Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project , 2012, ArXiv.

[11]  Raffaele Tripiccione,et al.  Thermodynamic glass transition in a spin glass without time-reversal symmetry , 2012, Proceedings of the National Academy of Sciences.

[12]  G. Parisi,et al.  Replica symmetry breaking in and around six dimensions , 2011, 1111.3313.

[13]  G. Parisi,et al.  A numerical study of the overlap probability distribution and its sample-to-sample fluctuations in a mean-field model , 2011, 1108.0759.

[14]  D. Yllanes Rugged free-energy landscapes in disordered spin systems , 2011, 1111.0266.

[15]  V. Martin-Mayor,et al.  Critical behavior of the dilute antiferromagnet in a magnetic field , 2011 .

[16]  S. F. Schifano,et al.  Sample-to-sample fluctuations of the overlap distributions in the three-dimensional Edwards-Anderson spin glass , 2011, 1107.5772.

[17]  A. Bray,et al.  Disappearance of the de Almeida-Thouless line in six dimensions , 2011, 1102.1675.

[18]  K. Kindo,et al.  Existence of a Phase Transition under Finite Magnetic Field in the Long-Range RKKY Ising Spin Glass DyxY1-xRu2Si2 , 2010, 1009.6115.

[19]  G. Parisi,et al.  Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass. , 2010, Physical review letters.

[20]  S. F. Schifano,et al.  Nature of the spin-glass phase at experimental length scales , 2010, 1003.2569.

[21]  L. A. Fernandez,et al.  Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis , 2009, 0905.0322.

[22]  V. Martin-Mayor,et al.  Mean-value identities as an opportunity for Monte Carlo error reduction. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Andrea Cavagna,et al.  Supercooled liquids for pedestrians , 2009, 0903.4264.

[24]  S. F. Schifano,et al.  An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature , 2008, 0811.2864.

[25]  Tam'as Temesv'ari,et al.  Almeida-Thouless transition below six dimensions , 2008, 0809.1839.

[26]  G. Parisi,et al.  Dilute one-dimensional spin glasses with power law decaying interactions. , 2008, Physical review letters.

[27]  Helmut G Katzgraber,et al.  Behavior of Ising spin glasses in a magnetic field. , 2007, Physical review letters.

[28]  Wolfhard Janke,et al.  Rugged Free Energy Landscapes , 2008 .

[29]  T. Jörg Critical behavior of the three-dimensional bond-diluted ising spin glass : Finite-size scaling functions and universality , 2006 .

[30]  A. Tarancón,et al.  Spin-glass transition of the three-dimensional Heisenberg spin glass. , 2006, Physical review letters.

[31]  A. Cavagna,et al.  Spin-glass theory for pedestrians , 2005, cond-mat/0505032.

[32]  H. Takayama,et al.  Dynamical breakdown of the Ising spin-glass order under a magnetic field , 2004, cond-mat/0411291.

[33]  H. Katzgraber,et al.  Absence of an Almeida-Thouless line in three-dimensional spin glasses. , 2004, Physical review letters.

[34]  A. Young,et al.  Single spin and chiral glass transition in vector spin glasses in three dimensions. , 2003, Physical review letters.

[35]  T. Temesvari,et al.  Replica field theory and renormalization group for the Ising spin glass in an external magnetic field. , 2002, Physical review letters.

[36]  B. Drossel,et al.  p-Spin model in finite dimensions and its relation to structural glasses. , 2002, Physical review letters.

[37]  D. Petit,et al.  Ordering in Heisenberg spin glasses. , 2001, Physical review letters.

[38]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[39]  C. L. Ullod,et al.  Critical behavior of the three-dimensional Ising spin glass , 2000, cond-mat/0006211.

[40]  G. Parisi,et al.  Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical Foundations and Numerical Evidences , 1999, cond-mat/9906076.

[41]  D. Petit,et al.  Ordering In A Spin Glass under Applied Magnetic Field , 1999, cond-mat/9910353.

[42]  S. Caracciolo,et al.  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[43]  G. Parisi,et al.  The four-dimensional site-diluted Ising model: A finite-size scaling study , 1997, hep-lat/9707017.

[44]  I. Kondor,et al.  Beyond the Sherrington-Kirkpatrick Model , 1997, cond-mat/9705215.

[45]  E. Marinari Optimized monte carlo methods , 1996, cond-mat/9612010.

[46]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[47]  V. Martin-Mayor,et al.  New universality class in three dimensions?: the antiferromagnetic RP2 model , 1995, hep-lat/9511003.

[48]  Lundgren,et al.  Static scaling in a short-range Ising spin glass. , 1991, Physical review. B, Condensed matter.

[49]  T. R. Kirkpatrick,et al.  Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. , 1989, Physical review. A, General physics.

[50]  Fisher,et al.  Equilibrium behavior of the spin-glass ordered phase. , 1988, Physical review. B, Condensed matter.

[51]  T. R. Kirkpatrick,et al.  p-spin-interaction spin-glass models: Connections with the structural glass problem. , 1987, Physical review. B, Condensed matter.

[52]  A. Bray,et al.  Scaling theory of the ordered phase of spin glasses , 1987 .

[53]  Fisher,et al.  Ordered phase of short-range Ising spin-glasses. , 1986, Physical review letters.

[54]  Fisher,et al.  Scaling in spin-glasses. , 1985, Physical review letters.

[55]  W. L. Mcmillan Scaling theory of Ising spin glasses , 1984 .

[56]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[57]  P. Anderson,et al.  One-dimensional spin-glass model with long-range random interactions , 1983 .

[58]  Kurt Binder,et al.  Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models , 1982 .

[59]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[60]  A. Bray,et al.  Some observations on the mean-field theory of spin glasses , 1980 .

[61]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[62]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[63]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[64]  S. Edwards,et al.  Theory of spin glasses. II , 1976 .

[65]  M. P. Nightingale,et al.  Scaling theory and finite systems , 1976 .

[66]  S. Edwards,et al.  Theory of spin glasses , 1975 .