Solving the 3D High-Frequency Helmholtz Equation using Contour Integration and Polynomial Preconditioning

We propose an iterative solution method for the 3D high-frequency Helmholtz equation that exploits a contour integral formulation of spectral projectors. In this framework, the solution in certain invariant subspaces is approximated by solving complex-shifted linear systems, resulting in faster GMRES iterations due to the restricted spectrum. The shifted systems are solved by exploiting a polynomial fixed-point iteration, which is a robust scheme even if the magnitude of the shift is small. Numerical tests in 3D indicate that $O(n^{1/3})$ matrix-vector products are needed to solve a high-frequency problem with a matrix size $n$ with high accuracy. The method has a small storage requirement, can be applied to both dense and sparse linear systems, and is highly parallelizable.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  M. V. Hoop,et al.  INTERCONNECTED HIERARCHICAL RANK-STRUCTURED METHODS FOR DIRECTLY SOLVING AND PRECONDITIONING THE HELMHOLTZ EQUATION , 2018 .

[3]  Yousef Saad,et al.  A Rational Function Preconditioner For Indefinite Sparse Linear Systems , 2017, SIAM J. Sci. Comput..

[4]  Martin J. Gander,et al.  How Large a Shift is Needed in the Shifted Helmholtz Preconditioner for its Effective Inversion by Multigrid? , 2017, SIAM J. Sci. Comput..

[5]  JIANLIN XIA,et al.  Parallel Randomized and Matrix-Free Direct Solvers for Large Structured Dense Linear Systems , 2016, SIAM J. Sci. Comput..

[6]  Yousef Saad,et al.  Computing Partial Spectra with Least-Squares Rational Filters , 2016, SIAM J. Sci. Comput..

[7]  Laurent Demanet,et al.  The method of polarized traces for the 2D Helmholtz equation , 2014, J. Comput. Phys..

[8]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[9]  Hossein Noormohammadi Pour,et al.  New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems , 2015 .

[10]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[11]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[12]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[13]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[14]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[15]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[16]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[17]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[18]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[19]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[20]  Eugene E. Tyrtyshnikov,et al.  Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..

[21]  Jie Shen,et al.  Spectral Approximation of the Helmholtz Equation with High Wave Numbers , 2005, SIAM J. Numer. Anal..

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[24]  Martin H. Gutknecht,et al.  The Chebyshev iteration revisited , 2002, Parallel Comput..

[25]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[26]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[27]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[28]  G. D. Byrne,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1996 .

[29]  Changsoo Shin Sponge boundary condition for frequency-domain modeling , 1995 .

[30]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[31]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[32]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[33]  Lothar Reichel,et al.  The application of Leja points to Richardson iteration and polynomial preconditioning , 1991 .

[34]  Y. Saad Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .

[35]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[36]  Gerhard Opfer,et al.  Richardson's iteration for nonsymmetric matrices , 1984 .

[37]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[38]  Richard S. Varga,et al.  Zero-Free Parabolic Regions for Sequences of Polynomials , 1976 .

[39]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[40]  H. E. Wrigley Accelerating the Jacobi Method for Solving Simultaneous Equations by Chebyshev Extrapolation When the Eigenvalues of the Iteration Matrix are Complex , 1963, Computer/law journal.

[41]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.