On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel.

[1]  M. Gopalakrishnan,et al.  Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. , 1995, Biophysical journal.

[2]  L. Schild,et al.  Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins , 1995, The Journal of general physiology.

[3]  E. Di Cera,et al.  An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Jansonius,et al.  An alkali metal ion size-dependent switch in the active site structure of dialkylglycine decarboxylase. , 1994, Biochemistry.

[5]  S. Cowan,et al.  Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites. , 1994, Science.

[6]  J. Falke,et al.  Molecular Tuning of Ion Binding to Calcium Signaling Proteins , 1994, Quarterly Reviews of Biophysics.

[7]  P. Bjorkman,et al.  Crystal structure of tandem type III fiibronectin domains from drosophila neuroglian at 2.0 å , 1994, Neuron.

[8]  L. Schild,et al.  Permeation of Na+ through open and Zn(2+)-occupied conductance states of cardiac sodium channels modified by batrachotoxin: exploring ion-ion interactions in a multi-ion channel. , 1994, Biophysical journal.

[9]  T. Blundell,et al.  Structure of pentameric human serum amyloid P component , 1994, Nature.

[10]  A. Bahinski,et al.  Differential contribution by conserved glutamate residues to an ion‐selectivity site in the L‐type Ca2+ channel pore , 1993, FEBS letters.

[11]  William A. Catterall,et al.  Structure and function of voltage-gated ion channels , 1993, Trends in Neurosciences.

[12]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.

[13]  C. Miller Potassium selectivity in proteins: oxygen cage or pi in the face? , 1993, Science.

[14]  G. Váradi,et al.  Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. , 1993, The Journal of biological chemistry.

[15]  R. Latorre,et al.  Ion conduction in substates of the batrachotoxin-modified Na+ channel from toad skeletal muscle. , 1993, Biophysical journal.

[16]  Y. Mori,et al.  Structural determinants of ion selectivity in brain calcium channel , 1993, FEBS letters.

[17]  O. Andersen,et al.  Proton block of rat brain sodium channels. Evidence for two proton binding sites and multiple occupancy , 1993, The Journal of general physiology.

[18]  E. Di Cera,et al.  Thrombin is a Na(+)-activated enzyme. , 1992, Biochemistry.

[19]  W. Catterall,et al.  Cellular and molecular biology of voltage-gated sodium channels. , 1992, Physiological reviews.

[20]  M. Sheets,et al.  Mechanisms of extracellular divalent and trivalent cation block of the sodium current in canine cardiac Purkinje cells. , 1992, The Journal of physiology.

[21]  G. Tomaselli,et al.  Molecular localization of an ion-binding site within the pore of mammalian sodium channels. , 1992, Science.

[22]  R. Rogart,et al.  A Mutant of TTX-Resistant Cardiac Sodium Channels with TTX-Sensitive Properties , 1992, Science.

[23]  W. Stühmer,et al.  Calcium channel characteristics conferred on the sodium channel by single mutations , 1992, Nature.

[24]  O. Alvarez,et al.  Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore. , 1992, Biophysical journal.

[25]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[26]  M. Rossmann,et al.  Atomic structure of single-stranded DNA bacteriophage ΦX174 and its functional implications , 1991, Nature.

[27]  S. Siegelbaum,et al.  Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes , 1991, The Journal of general physiology.

[28]  F. Conti,et al.  Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II , 1991, FEBS letters.

[29]  F. Sigworth,et al.  Patch recordings from the electrocytes of Electrophorus electricus. Na currents and PNa/PK variability , 1991, The Journal of general physiology.

[30]  L. Schild,et al.  Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+/saxitoxin binding site. , 1991, Biophysical journal.

[31]  L. Schild,et al.  Zn2(+)-induced subconductance events in cardiac Na+ channels prolonged by batrachotoxin. Current-voltage behavior and single-channel kinetics , 1991, The Journal of general physiology.

[32]  L. Schild,et al.  Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels , 1991, The Journal of general physiology.

[33]  J. Trimmer,et al.  Primary structure and functional expression of a mammalian skeletal muscle sodium channel , 1989, Neuron.

[34]  B. Nilius Calcium block of guinea‐pig heart sodium channels with and without modification by the piperazinylindole DPI 201‐106. , 1988, The Journal of physiology.

[35]  Peter Hess,et al.  Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel , 1987, Nature.

[36]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[37]  W. Almers,et al.  The Ca channel in skeletal muscle is a large pore. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[39]  E. Frehland,et al.  Fluctuations of barrier structure in ionic channels. , 1980, Biochimica et biophysica acta.

[40]  P A Pappone,et al.  Voltage‐clamp experiments in normal and denervated mammalian skeletal muscle fibres. , 1980, The Journal of physiology.

[41]  R. Zahler Enzyme Structure and Mechanism , 1979, The Yale Journal of Biology and Medicine.

[42]  L. Goldman,et al.  The permeability of the sodium channel in Myxicola to the alkali cations , 1976, The Journal of general physiology.

[43]  D. T. Campbell Ionic selectivity of the sodium channel of frog skeletal muscle , 1976, The Journal of general physiology.

[44]  B. Hille Ionic selectivity, saturation, and block in sodium channels. A four- barrier model , 1975, The Journal of general physiology.

[45]  B. Hille,et al.  Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  H. Meves,et al.  Calcium inward currents in internally perfused giant axons , 1973, The Journal of physiology.

[47]  A. Woodhull,et al.  Ionic Blockage of Sodium Channels in Nerve , 1973, The Journal of general physiology.

[48]  B. Hille The Permeability of the Sodium Channel to Metal Cations in Myelinated Nerve , 1972, The Journal of general physiology.

[49]  B. Hille The Permeability of the Sodium Channel to Organic Cations in Myelinated Nerve , 1971, The Journal of general physiology.

[50]  W. Chandler,et al.  Voltage clamp experiments on internally perfused giant axons. , 1965, The Journal of physiology.

[51]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[52]  H. Guy,et al.  Structural models of Na+, Ca2+, and K+ channels. , 1995, Society of General Physiologists series.

[53]  H. Fozzard,et al.  A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. , 1994, Biophysical journal.

[54]  K. Chandy,et al.  Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. , 1993, Molecular biology and evolution.

[55]  J. Glusker Structural aspects of metal liganding to functional groups in proteins. , 1991, Advances in protein chemistry.

[56]  M. James,et al.  Calcium-binding sites in proteins: a structural perspective. , 1991, Advances in protein chemistry.

[57]  O. Andersen Kinetics of ion movement mediated by carriers and channels. , 1989, Methods in enzymology.

[58]  G. Yellen Permeation in potassium channels: implications for channel structure. , 1987, Annual review of biophysics and biophysical chemistry.

[59]  T. Begenisich Molecular properties of ion permeation through sodium channels. , 1987, Annual review of biophysics and biophysical chemistry.

[60]  R. Tsien,et al.  Calcium channels: mechanisms of selectivity, permeation, and block. , 1987, Annual review of biophysics and biophysical chemistry.

[61]  A. Fersht The hydrogen bond in molecular recognition , 1987 .

[62]  D. Levitt Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. , 1986, Annual review of biophysics and biophysical chemistry.

[63]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[64]  T. Narahashi,et al.  Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. , 1984, Biophysical journal.

[65]  C A Lewis,et al.  Ion‐concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. , 1979, The Journal of physiology.

[66]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[67]  C. Armstrong Potassium pores of nerve and muscle membranes. , 1975, Membranes.

[68]  B. Hille Ionic selectivity of Na and K channels of nerve membranes. , 1975, Membranes.