Current status of spent fuels and the development of computer programs for the PWR spent fuel management in Korea

Nuclear power has supplied the national electric power demand for three decades in the Republic of Korea, which has resulted in the accumulation of a large amount of spent fuels. The government has a policy on the temporary storage of these at nuclear power plants at present. In order to establish a proper policy for spent fuel management in the near future, the characteristics and amount of spent fuels should be figured out properly. In this paper, the current status of spent fuels in the Republic of Korea is outlined focusing on the major characteristics of spent fuels such as initial enrichment and discharge burnup. According to the current trend, the average burnup of PWR spent fuels will reach 55 GWd/MtU by the middle of 2010s. Three different kinds of computer programs were developed to supply crucial data regarding spent fuels. The first one was developed to project the amount of spent fuels in the future based on three different projection models. The projection was verified with real spent fuel data. The second Database program was prepared for the analysis of statistics regarding PWR spent fuels. Each PWR spent fuel assembly was specified with 18 items of data such as fuel type, initial enrichment, and discharge burnup. The usefulness of the Database program was illustrated through an analysis of the geological disposal density and cooling time of PWR spent fuels. Disposal area could be reduced by 50% through a proper analysis of the cooling time of PWR spent fuels. Finally, A-SOURCE program was developed to easily calculate source-terms such as decay heat and radionuclide concentration after the pyro-processing of PWR spent fuel assemblies. Linked to the Database program, the A-SOURCE program selected PWR spent fuel assemblies and could calculate the source-terms for any combination of them. An illustration of the usage of the program was demonstrated.