Nanoparticle coding: size-based assays using atomic force microscopy.

Described herein is a novel strategy for the construction and interrogation of an assay platform based on (1) the size encoding of labeled nanoparticles; (2) the high imaging resolution of atomic force microscopy; and (3) evaporatively driven self-assembly of dense nanoparticle layers. This strategy employs two different sized nanoparticles that couple in the presence of a target analyte. In this example, one set of particles is a few hundred nanometers in size and acts as a capture substrate, while a second set of smaller particles serve as the analyte label. Thus, by forming an evaporatively assembled layer from a mixture of the two particle dispersions, the imaged size of the smaller particles when bound to the larger capture particles identifies the presence of the analyte. This letter demonstrates the feasibility of our bar-code strategy by concept tests using the binding specificity of biotin-modified silica nanoparticles (300-nm diameter) with streptavidin-labeled gold nanoparticles (10-nm diameter). The potential to extensively multiplex this assay strategy is briefly discussed.