Generalized Bosbach States

Bosbach states represent a way of probabilisticly evaluating the formulas from various (commutative or non-commutative) many-valued logics. They are defined on the algebras corresponding to these logics with values in $[0,1]$. Starting from the observation that in the definition of Bosbach states there intervenes the standard MV-algebra structure of $[0,1]$, in this paper we introduce Bosbach states defined on residuated lattices with values in residuated lattices. We are led to two types of generalized Bosbach states, with distinct behaviours. The properties of generalized Bosbach states, proven in the paper, may serve as an algebraic foundation for developping some probabilistic many-valued logics. {\bf Keywords}: Bosbach states, residuated lattices, MV-algebras, $s$-Cauchy completion, metric completion. {\bf MSC 2010}: Primary 06F35. Secondary 06D35.

[1]  Antoni Torrens Torrell,et al.  Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation 2(x2) = (2x)2 , 2006, Stud Logica.

[2]  Ioana Leustean Metric Completions of MV-algebras with States: An Approach to Stochastic Independence , 2011, J. Log. Comput..

[3]  Andrei Popescu,et al.  Similarity Convergence in Residuated Structures , 2005, Log. J. IGPL.

[4]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[5]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Tommaso Flaminio Strong non-standard completeness for fuzzy logics , 2008, Soft Comput..

[8]  George Georgescu,et al.  Bosbach states on fuzzy structures , 2004, Soft Comput..

[9]  A. Iorgulescu,et al.  Algebras of Logic as BCK Algebras , 2008 .

[10]  T. Bukowski,et al.  Integral. , 2019, Healthcare protection management.

[11]  Ioana Leustean Tensor Products of Probability MV-algebras , 2010, J. Multiple Valued Log. Soft Comput..

[12]  Anatolij Dvurečenskij,et al.  On Riečan and Bosbach states for bounded non-commutative $R\ell $-monoids , 2006 .

[13]  Anatolij Dvurecenskij,et al.  Probabilistic Averaging in Bounded Rℓ-Monoids , 2006 .

[14]  Petr Hájek,et al.  Fss 5598 Modc+(sc) Triangular Norm Based Predicate Fuzzy Logics , 2022 .

[15]  Anatolij Dvurecenskij,et al.  States on Pseudo MV-Algebras , 2001, Stud Logica.

[16]  J. K. Hunter,et al.  Measure Theory , 2007 .

[17]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[18]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[19]  Esko Turunen,et al.  States on semi-divisible residuated lattices , 2008, Soft Comput..

[20]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[21]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[22]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[23]  B. Riecan,et al.  Integral, Measure, and Ordering , 1997 .

[24]  Beloslav Riečan,et al.  Probability on MV algebras , 1997 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Anatolij Dvurecenskij,et al.  State-morphism MV-algebras , 2009, Ann. Pure Appl. Log..

[27]  H. Priestley,et al.  Distributive Lattices , 2004 .

[28]  H. Gaifman Concerning measures in first order calculi , 1964 .

[29]  George Georgescu,et al.  States on Polyadic MV-algebras , 2010, Stud Logica.

[30]  Lluis Godo,et al.  A logic for reasoning about the probability of fuzzy events , 2007, Fuzzy Sets Syst..