A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
暂无分享,去创建一个
Nando de Freitas | Eric Brochu | José A. Castellanos | Ruben Martinez-Cantin | Arnaud Doucet | A. Doucet | N. D. Freitas | Ruben Martinez-Cantin | E. Brochu | J. A. Castellanos
[1] Harold J. Kushner,et al. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .
[2] Edward J. Sondik,et al. The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..
[3] Alan J. Mayne,et al. Towards Global Optimisation 2 , 1976 .
[4] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[5] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[6] K. Chaloner,et al. Bayesian Experimental Design: A Review , 1995 .
[7] Dimitri P. Bertsekas,et al. Dynamic Programming and Optimal Control, Two Volume Set , 1995 .
[8] Marco Locatelli,et al. Bayesian Algorithms for One-Dimensional Global Optimization , 1997, J. Glob. Optim..
[9] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[10] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[11] J. Cadre,et al. Optimal observer trajectory in bearings-only tracking for manoeuvring sources , 1999 .
[12] John N. Tsitsiklis,et al. Actor-Critic Algorithms , 1999, NIPS.
[13] Niclas Bergman,et al. Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .
[14] Hirokazu Kato,et al. Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).
[15] Michael I. Jordan,et al. PEGASUS: A policy search method for large MDPs and POMDPs , 2000, UAI.
[16] Peter L. Bartlett,et al. Infinite-Horizon Policy-Gradient Estimation , 2001, J. Artif. Intell. Res..
[17] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[18] J. Cadre,et al. Planification for Terrain- Aided Navigation , 2002 .
[19] Michael James Sasena,et al. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .
[20] Jan M. Maciejowski,et al. Predictive control : with constraints , 2002 .
[21] A. ilinskas,et al. Global optimization based on a statistical model and simplicial partitioning , 2002 .
[22] D. Finkel,et al. Direct optimization algorithm user guide , 2003 .
[23] Y. Bar-Shalom,et al. Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.
[24] Ronald J. Williams,et al. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.
[25] Marcel L. Hernandez,et al. Optimal Sensor Trajectories in Bearings-Only Tracking , 2004 .
[26] Nicholas Roy,et al. Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
[27] Robin J. Evans,et al. Simulation-Based Optimal Sensor Scheduling with Application to Observer Trajectory Planning , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[28] Wolfram Burgard,et al. Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.
[29] Stefan Schaal,et al. Natural Actor-Critic , 2003, Neurocomputing.
[30] Gamini Dissanayake,et al. Trajectory planning for multiple robots in bearing-only target localisation , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[31] Arnaud Doucet,et al. SMC Samplers for Bayesian Optimal Nonlinear Design , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.
[32] Hugh F. Durrant-Whyte,et al. Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.
[33] Hugh Durrant-Whyte,et al. Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .
[34] Stefan Schaal,et al. Policy Gradient Methods for Robotics , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[35] Giorgio Metta,et al. YARP: Yet Another Robot Platform , 2006 .
[36] Hugh Durrant-Whyte,et al. Simultaneous localization and mapping (SLAM): part II , 2006 .
[37] Eduardo Mario Nebot,et al. Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[38] Teresa A. Vidal-Calleja,et al. Active control for single camera SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..
[39] Nando de Freitas,et al. Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.
[40] Andreas Krause,et al. Efficient Planning of Informative Paths for Multiple Robots , 2006, IJCAI.
[41] Nando de Freitas,et al. Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2007, Robotics: Science and Systems.
[42] Julien Bect,et al. On the convergence of the expected improvement algorithm , 2007 .
[43] Nando de Freitas,et al. Active Preference Learning with Discrete Choice Data , 2007, NIPS.
[44] E. Vázquez,et al. Convergence properties of the expected improvement algorithm , 2007, 0712.3744.
[45] Tao Wang,et al. Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.
[46] Ruben Martinez-Cantin. Active Map Learning for Robots: Insights into Statistical Consistency , 2008 .
[47] S. Sukkarieh,et al. Observability analysis and active control for airborne SLAM , 2008, IEEE Transactions on Aerospace and Electronic Systems.
[48] D. Lizotte. Practical bayesian optimization , 2008 .
[49] Nicholas Roy,et al. Trajectory Optimization using Reinforcement Learning for Map Exploration , 2008, Int. J. Robotics Res..
[50] KasabovNikola,et al. 2008 Special issue , 2008 .
[51] Stefan Schaal,et al. 2008 Special Issue: Reinforcement learning of motor skills with policy gradients , 2008 .
[52] Andreas Krause,et al. Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..
[53] Sethu Vijayakumar,et al. A novel method for learning policies from variable constraint data , 2009, Auton. Robots.
[54] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[55] Gregory Dudek,et al. Inferring a probability distribution function for the pose of a sensor network using a mobile robot , 2009, 2009 IEEE International Conference on Robotics and Automation.
[56] Marc Toussaint,et al. Learning model-free robot control by a Monte Carlo EM algorithm , 2009, Auton. Robots.
[57] Martin A. Riedmiller,et al. Reinforcement learning for robot soccer , 2009, Auton. Robots.
[58] Sethu Vijayakumar,et al. A novel method for learning policies from constrained motion , 2009, 2009 IEEE International Conference on Robotics and Automation.
[59] Christopher G. Atkeson,et al. Finding and transferring policies using stored behaviors , 2010, Auton. Robots.