Ultrabroadband strong light absorption based on thin multilayered metamaterials

Light absorbers have drawn intensive attention as crucial components for solar-energy harvesting, thermal emission tailoring, modulators, etc. However, achievement of light absorbers with wide bandwidth remains a challenge thus far. Here, a thin, unprecedentedly ultrabroadband strong light absorber is proposed and experimentally demonstrated, which consists of periodic taper arrays constructed by an alumina–chrome multilayered metamaterial (MM) on a gold substrate. This MM can change from a hyperbolic material to an anisotropic dielectric material at different frequency ranges and the special material features are the fundamental origins of the ultrabroadband absorption. The absorber is quite insensitive to the incident angle, and can be insensitive to the polarization. One two-dimensional periodic array of 400-nm height MM tapers is fabricated. The measured absorption is over 90% over almost the entire solar spectrum, reaching an average level of 96%, and remains high (above 85%) even in the longer-wavelength range till 4 μm. The proposed absorbers open up a new avenue to realize broadband thin light-harvesting structures.

[1]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[2]  Zongfu Yu,et al.  Extraordinary optical absorption through subwavelength slits. , 2009, Optics letters.

[3]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[4]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[5]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[6]  Kai Liu,et al.  Rainbow Trapping in Hyperbolic Metamaterial Waveguide , 2013, Scientific Reports.

[7]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[8]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[9]  Zhida Xu,et al.  Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell. , 2012, Applied optics.

[10]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[11]  P. Quémerais,et al.  Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. , 2007, Physical review letters.

[12]  V. Kravets,et al.  Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix , 2010 .

[13]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[14]  Nader Engheta,et al.  Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media , 2007 .

[15]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[16]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[17]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[18]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[19]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[20]  Thomas Søndergaard,et al.  Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves , 2012, Nature Communications.

[21]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[22]  Dylan Lu,et al.  Hyperlenses and metalenses for far-field super-resolution imaging , 2012, Nature Communications.

[23]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[24]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[25]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[26]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[27]  J. Bastos,et al.  Electromagnetic Modeling by Finite Element Methods , 2003 .

[28]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[29]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[30]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[31]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[32]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[33]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[34]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[35]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[36]  W. A. Murray,et al.  Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure , 2006 .

[37]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[38]  S. Bozhevolnyi,et al.  Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves , 2013 .

[39]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[40]  Nicolas Bonod,et al.  Total absorption of light by lamellar metallic gratings. , 2008, Optics express.

[41]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[42]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[43]  Daniel Maystre,et al.  The total absorption of light by a diffraction grating , 1976 .