Two-Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO2 Conversion.

Two-dimensional (2D) photocatalysts are highly attractive for their great potential in environmental remediation and energy conversion. Herein, we report a novel layered zinc silicate (LZS) photocatalyst synthesized by a liquid-phase epitaxial growth route using silica derived from vermiculite, a layered silicate clay mineral, as both the lattice-matched substrate and Si source. The epitaxial growth of LZS is limited in the 2D directions, thus generating the vermiculite-type crystal structure and ultrathin nanosheet morphology with thicknesses of 8-15 nm and a lateral size of about 200 nm. Experimental observations and DFT calculations indicated that LZS has a superior band alignment for the degradation of organic pollutants and reduction of CO2 to CO. The material exhibited efficient photocatalytic performance for 4-chlorophenol (4-CP) degradation and CO2 conversion into CO and is the first example of a claylike 2D photocatalyst with strong photooxidation and photoreduction capabilities.

[1]  Zhiqun Lin,et al.  Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2. , 2018, Angewandte Chemie.

[2]  Zhiqun Lin,et al.  Composition Tailoring via N and S Co‐doping and Structure Tuning by Constructing Hierarchical Pores: Metal‐Free Catalysts for High‐Performance Electrochemical Reduction of CO 2 , 2018, Angewandte Chemie.

[3]  Jianfeng Chen,et al.  Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. , 2018, Angewandte Chemie.

[4]  M. Muhler,et al.  Katalyse der Kohlenstoffdioxid‐Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen , 2018 .

[5]  K. Fujii,et al.  Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light , 2018, Angewandte Chemie.

[6]  K. Fujii,et al.  Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light , 2018, Angewandte Chemie.

[7]  Junhong Chen,et al.  Nitrogen Vacancy Structure Driven Photoeletrocatalytic Degradation of 4-Chlorophenol Using Porous Graphitic Carbon Nitride Nanosheets , 2018 .

[8]  Y. Nosaka,et al.  Generation and Detection of Reactive Oxygen Species in Photocatalysis. , 2017, Chemical reviews.

[9]  Ya Xiong,et al.  Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. , 2017, Environmental science & technology.

[10]  Lan Wang,et al.  Insights into the physicochemical characteristics from vermiculite to silica nanosheets , 2016 .

[11]  T. Peng,et al.  Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels , 2016 .

[12]  Shuxin Ouyang,et al.  Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm. , 2016, Journal of the American Chemical Society.

[13]  Kulamani Parida,et al.  A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts , 2016 .

[14]  Tierui Zhang,et al.  Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production , 2016 .

[15]  Tierui Zhang,et al.  Defect‐Rich Ultrathin ZnAl‐Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water , 2015, Advanced materials.

[16]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[17]  Hee Jo Song,et al.  Enhanced Photocatalytic Activity of Ultrathin Ba5Nb4O15 Two-Dimensional Nanosheets. , 2015, ACS applied materials & interfaces.

[18]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[19]  Jiaguo Yu,et al.  Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel , 2014, Science China Materials.

[20]  G. Spoto,et al.  CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study , 2014 .

[21]  Jiaguo Yu,et al.  Two-dimensional layered composite photocatalysts. , 2014, Chemical communications.

[22]  Changyan Cao,et al.  Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb²⁺ and methylene blue adsorption. , 2014, ACS applied materials & interfaces.

[23]  T. Ishihara,et al.  Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. , 2014, The journal of physical chemistry letters.

[24]  Gaoke Zhang,et al.  Recent advances in synthesis and applications of clay-based photocatalysts: a review. , 2014, Physical chemistry chemical physics : PCCP.

[25]  Y. Ide,et al.  Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis. , 2013, Journal of the American Chemical Society.

[26]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[27]  L. Schmidt-Mende,et al.  Photokatalytische Reduktion von CO 2 an TiO 2 und anderen Halbleitern , 2013 .

[28]  Ya‐Xia Yin,et al.  Improving the Li-ion storage performance of layered zinc silicate through the interlayer carbon and reduced graphene oxide networks. , 2013, ACS applied materials & interfaces.

[29]  H. Kisch Semiconductor photocatalysis--mechanistic and synthetic aspects. , 2013, Angewandte Chemie.

[30]  H. Kisch Halbleiterphotokatalyse – mechanistische und präparative Aspekte , 2013 .

[31]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[32]  Christopher W. Jones,et al.  Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. , 2012, Journal of the American Chemical Society.

[33]  G. Marcì,et al.  A survey of photocatalytic materials for environmental remediation. , 2012, Journal of hazardous materials.

[34]  Ziyu Wu,et al.  New hierarchical zinc silicate nanostructures and their application in lead ion adsorption , 2012 .

[35]  Shuo Chen,et al.  Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. , 2012, Environmental science & technology.

[36]  Zhong-lin Chen,et al.  Effects of amorphous-zinc-silicate-catalyzed ozonation on the degradation of p-chloronitrobenzene in drinking water , 2011 .

[37]  Y. Ide,et al.  Effective and selective adsorption of Zn2+ from seawater on a layered silicate. , 2011, Angewandte Chemie.

[38]  R. Palgrave,et al.  Visible Light Photo-oxidation of Model Pollutants Using CaCu3Ti4O12: An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity , 2010, Journal of the American Chemical Society.

[39]  Qi-yuan Chen,et al.  Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution , 2010 .

[40]  Jinhua Ye,et al.  Synthesis of monodisperse Zn-smectite , 2010 .

[41]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[42]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[43]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. , 2004, Angewandte Chemie.

[44]  M. I. Maldonado,et al.  Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications , 2003 .

[45]  S. Seifert,et al.  Crystallization and textural porosity of synthetic clay minerals , 2002 .

[46]  J. Quirk,et al.  The Interlayer Structure of La-Vermiculite , 1998 .

[47]  D. Bahnemann,et al.  Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study , 1996 .

[48]  S. Petit,et al.  Natural and Synthetic Copper Phyllosilicates Studied by XPS , 1992 .

[49]  P. Wood The potential diagram for oxygen at pH 7. , 1988, The Biochemical journal.

[50]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[51]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[52]  S. Miao,et al.  Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. , 2005, Angewandte Chemie.

[53]  V. Luca,et al.  Synthesis and characterization of a (Zn, Ti)-substituted layered silicate , 1995 .

[54]  R. Kirkpatrick,et al.  High-resolution 29 Si NMR spectroscopy of 2:1 layer silicates: correlations among chemical shift, structural distortions, and chemical variations. , 1987 .

[55]  J. Deville,et al.  X-ray photoelectron study of some silicon-oxygen compounds , 1977 .