Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift
暂无分享,去创建一个
[1] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[2] John W. Barrett,et al. Numerical approximation of corotational dumbbell models for dilute polymers , 2009 .
[3] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[4] E. Süli,et al. EXISTENCE OF GLOBAL WEAK SOLUTIONS TO DUMBBELL MODELS FOR DILUTE POLYMERS WITH MICROSCOPIC CUT-OFF , 2008 .
[5] Farit G. Avkhadiev,et al. Unified Poincaré and Hardy inequalities with sharp constants for convex domains , 2007 .
[6] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .
[7] V. Gol'dshtein,et al. Weighted Sobolev spaces and embedding theorems , 2007, math/0703725.
[8] Pingwen Zhang,et al. Mathematical Analysis of Multi-Scale Models of Complex Fluids , 2007 .
[9] John W. Barrett,et al. Existence of Global Weak Solutions to Some Regularized Kinetic Models for Dilute Polymers , 2007, Multiscale Model. Simul..
[10] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .
[11] John W. Barrett,et al. Existence of global weak solutions to kinetic models for dilute polymers , 2006 .
[12] E. Süli,et al. Existence of global weak solutions for some polymeric flow models , 2005 .
[13] D. Pallara,et al. Dirichlet boundary conditions for elliptic operators with unbounded drift , 2005 .
[14] Qiang Du,et al. FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..
[15] Cédric Chauvière,et al. Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .
[16] Cédric Chauvière,et al. Simulation of dilute polymer solutions using a Fokker–Planck equation , 2004 .
[17] G. Prato,et al. Elliptic operators with unbounded drift coefficients and Neumann boundary condition , 2004 .
[18] Giuseppe Da Prato,et al. On a class of elliptic operators with unbounded coefficients in convex domains , 2004 .
[19] Cédric Chauvière,et al. A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations , 2003 .
[20] Alexei Lozinski,et al. Spectral methods for kinetic theory models of viscoelastic fluids , 2003 .
[21] Benjamin Jourdain,et al. NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .
[22] S. Cerrai. Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .
[23] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[24] Yehuda Pinchover,et al. On the best constant for Hardy's inequality in $\mathbb{R}^n$ , 1998 .
[25] V. Mizel,et al. ON THE BEST CONSTANT FOR HARDY’S INEQUALITY IN R , 1998 .
[26] Jie Shen,et al. Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..
[27] W. Verkley,et al. A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .
[28] A. Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb {R}^n$ , 1997 .
[29] Seng-Kee Chua,et al. On Weighted Sobolev Spaces , 1996, Canadian Journal of Mathematics.
[30] Hans Christian Öttinger,et al. Stochastic Processes in Polymeric Fluids , 1996 .
[31] Philip S. Marcus,et al. A Spectral Method for Polar Coordinates , 1995 .
[32] W. Heinrichs,et al. Spectral collocation methods and polar coordinate singularities , 1991 .
[33] C. Bernardi. Optimal finite-element interpolation on curved domains , 1989 .
[34] J. Boyd. Chebyshev and Fourier Spectral Methods , 1989 .
[35] C. F. Curtiss,et al. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics , 1987 .
[36] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[37] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[38] M. Brereton. Dynamics of Polymeric Liquids , 1978 .
[39] Jackson B. Lackey,et al. Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .
[40] M. Golubitsky,et al. Stable mappings and their singularities , 1973 .
[41] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[42] Oleg Vladimirovič Besov,et al. О плотности гладких функции в весовых пространствах , 1968 .
[43] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[44] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .