Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

This paper is concerned with the analysis and implementation of spectral Galerkin meth- ods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical anal- ysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization of the differential operator based on the Maxwellian M corresponding to U , which vanishes along ∂D, we remove the unbounded drift coefficient at the expense of introducing a degeneracy, through M , in the principal part of the operator. The general class of admissible potentials considered includes the FENE (finitely extendible nonlinear elastic) model. We show the existence of weak solutions to the initial-boundary-value problem, and develop a fully-discrete spectral Galerkin method for such degenerate Fokker-Planck equations that exhibits optimal-order convergence in the Maxwellian-weighted H 1 norm on D. In the case of the FENE model, we also discuss variants of these analytical results when the Fokker-Planck equation is subjected to an alternative class of transforma- tions proposed by Chauviere and Lozinski; these map the original Fokker-Planck operator with an un- bounded drift coefficient into Fokker-Planck operators with unbounded drift and reaction coefficients, that have improved coercivity properties in comparison with the original operator. The analytical results are illustrated by numerical experiments for the FENE model in two space dimensions.

[1]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[2]  John W. Barrett,et al.  Numerical approximation of corotational dumbbell models for dilute polymers , 2009 .

[3]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[4]  E. Süli,et al.  EXISTENCE OF GLOBAL WEAK SOLUTIONS TO DUMBBELL MODELS FOR DILUTE POLYMERS WITH MICROSCOPIC CUT-OFF , 2008 .

[5]  Farit G. Avkhadiev,et al.  Unified Poincaré and Hardy inequalities with sharp constants for convex domains , 2007 .

[6]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[7]  V. Gol'dshtein,et al.  Weighted Sobolev spaces and embedding theorems , 2007, math/0703725.

[8]  Pingwen Zhang,et al.  Mathematical Analysis of Multi-Scale Models of Complex Fluids , 2007 .

[9]  John W. Barrett,et al.  Existence of Global Weak Solutions to Some Regularized Kinetic Models for Dilute Polymers , 2007, Multiscale Model. Simul..

[10]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[11]  John W. Barrett,et al.  Existence of global weak solutions to kinetic models for dilute polymers , 2006 .

[12]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[13]  D. Pallara,et al.  Dirichlet boundary conditions for elliptic operators with unbounded drift , 2005 .

[14]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[15]  Cédric Chauvière,et al.  Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .

[16]  Cédric Chauvière,et al.  Simulation of dilute polymer solutions using a Fokker–Planck equation , 2004 .

[17]  G. Prato,et al.  Elliptic operators with unbounded drift coefficients and Neumann boundary condition , 2004 .

[18]  Giuseppe Da Prato,et al.  On a class of elliptic operators with unbounded coefficients in convex domains , 2004 .

[19]  Cédric Chauvière,et al.  A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations , 2003 .

[20]  Alexei Lozinski,et al.  Spectral methods for kinetic theory models of viscoelastic fluids , 2003 .

[21]  Benjamin Jourdain,et al.  NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .

[22]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[23]  S. Bobkov,et al.  From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .

[24]  Yehuda Pinchover,et al.  On the best constant for Hardy's inequality in $\mathbb{R}^n$ , 1998 .

[25]  V. Mizel,et al.  ON THE BEST CONSTANT FOR HARDY’S INEQUALITY IN R , 1998 .

[26]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[27]  W. Verkley,et al.  A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .

[28]  A. Lunardi Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb {R}^n$ , 1997 .

[29]  Seng-Kee Chua,et al.  On Weighted Sobolev Spaces , 1996, Canadian Journal of Mathematics.

[30]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[31]  Philip S. Marcus,et al.  A Spectral Method for Polar Coordinates , 1995 .

[32]  W. Heinrichs,et al.  Spectral collocation methods and polar coordinate singularities , 1991 .

[33]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[34]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[35]  C. F. Curtiss,et al.  Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics , 1987 .

[36]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[37]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[38]  M. Brereton Dynamics of Polymeric Liquids , 1978 .

[39]  Jackson B. Lackey,et al.  Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .

[40]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[41]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[42]  Oleg Vladimirovič Besov,et al.  О плотности гладких функции в весовых пространствах , 1968 .

[43]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[44]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .