Weak and strong solutions for the incompressible Navier–Stokes equations with damping

In this paper, we show that the Cauchy problem of the Navier–Stokes equations with damping α|u|β−1u (α>0) has global weak solutions for any β⩾1, global strong solution for any β⩾7/2 and that the strong solution is unique for any 7/2⩽β⩽5.

[1]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[2]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[3]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[4]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[5]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[6]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[7]  L. Hsiao Quasilinear Hyperbolic Systems and Dissipative Mechanisms , 1998 .

[8]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[9]  Feimin Huang,et al.  Digital Object Identifier (DOI) 10.1007/s00205-002-0234-5 Convergence Rate for Compressible Euler Equations with Damping and Vacuum , 2022 .

[10]  K. Masuda Weak solutions of Navier-Stokes equations , 1984 .

[11]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[12]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[13]  D. Bresch,et al.  On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems , 2003 .

[14]  C. Foiaș Une remarque sur l’unicité des solutions des équations de Navier-Stokes en dimension $n$ , 1961 .

[15]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[16]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .