Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis?

Engineering the shape and size of catalyst particles and the interface between different components of heterogeneous catalysts at the nanometer level can radically alter their performances. This is particularly true with CeO2-based catalysts, where the precise control of surface atomic arrangements can modify the reactivity of Ce4+/Ce3+ ions, changing the oxygen release/uptake characteristics of ceria, which, in turn, strongly affects catalytic performance in several reactions like CO, soot, and VOC oxidation, WGS, hydrogenation, acid–base reactions, and so on. Despite the fact that many of these catalysts are polycrystalline with rather ill-defined morphologies, experimental and theoretical studies on well-defined nanocrystals have clearly established that the exposure of specific facets can increase/decrease surface oxygen reactivity and metal–support interaction (for supported metal nanoparticles), consequently affecting catalytic reactions. Here, we want to address the most recent developments in this...

[1]  Bing Liu,et al.  Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation , 2017 .

[2]  J. Rodríguez,et al.  Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. , 2017, Chemical Society reviews.

[3]  C. Wöll,et al.  IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. , 2017, Chemical Society reviews.

[4]  D. Weng,et al.  An exploration of soot oxidation over CeO2-ZrO2 nanocubes: Do more surface oxygen vacancies benefit the reaction? , 2017 .

[5]  N. López,et al.  Entropic contributions enhance polarity compensation for CeO2(100) surfaces. , 2017, Nature materials.

[6]  Pengfei Xie,et al.  CATALYTIC DEPHOSPHORYLATION USING CERIA NANOCRYSTALS , 2017 .

[7]  Chun-Hua Yan,et al.  Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal–Support Interaction , 2017 .

[8]  S. Carabineiro,et al.  Impact of the synthesis parameters on the solid state properties and the CO oxidation performance of ceria nanoparticles , 2017 .

[9]  J. Llorca,et al.  Surface Faceting and Reconstruction of Ceria Nanoparticles. , 2017, Angewandte Chemie.

[10]  D. Fino,et al.  Contact dynamics for a solid-solid reaction mediated by gas-phase oxygen: Study on the soot oxidation over ceria-based catalysts , 2016 .

[11]  M. Konsolakis The role of Copper–Ceria interactions in catalysis science: Recent theoretical and experimental advances , 2016 .

[12]  J. Llorca,et al.  CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2 , 2016 .

[13]  Wenxiang Zhang,et al.  CeO2 nanorods anchored on mesoporous carbon as an efficient catalyst for imine synthesis. , 2016, Chemical communications.

[14]  Yuanyuan Cui,et al.  Support morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation , 2016 .

[15]  Konstantin M. Neyman,et al.  Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria , 2016 .

[16]  J. Llorca,et al.  Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria‐Based Catalysts , 2016 .

[17]  Chunhua Yan,et al.  Recent Progress in Well‐Controlled Synthesis of Ceria‐Based Nanocatalysts towards Enhanced Catalytic Performance , 2016 .

[18]  Sai Zhang,et al.  Pressure Regulations on the Surface Properties of CeO2 Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions. , 2016, ACS applied materials & interfaces.

[19]  B. Cuenya,et al.  Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions. , 2016, The journal of physical chemistry letters.

[20]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[21]  Y. Xin,et al.  Semihydrogenation of Propyne over Cerium Oxide Nanorods, Nanocubes, and Nano‐Octahedra: Facet‐Dependent Parahydrogen‐Induced Polarization , 2016 .

[22]  Konstantin M. Neyman,et al.  Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications , 2016, Catalysis Letters.

[23]  J. Liu,et al.  Catalysis by Supported Single Metal Atoms , 2016, Microscopy and Microanalysis.

[24]  Fulong Yuan,et al.  Soot Combustion over Nanostructured Ceria with Different Morphologies , 2016, Scientific Reports.

[25]  X. Qin,et al.  Shape dependence of nanoceria on complete catalytic oxidation of o-xylene , 2016 .

[26]  Matteo Monai,et al.  Fundamentals and Catalytic Applications of CeO2-Based Materials. , 2016, Chemical reviews.

[27]  A. Trovarelli,et al.  Forty years of catalysis by ceria: A success story , 2016 .

[28]  G. Lu,et al.  Effect of Ceria Crystal Plane on the Physicochemical and Catalytic Properties of Pd/Ceria for CO and Propane Oxidation , 2016 .

[29]  Weixin Huang,et al.  Oxide Nanocrystal Model Catalysts. , 2016, Accounts of chemical research.

[30]  F. Negreiros,et al.  Creating single-atom Pt-ceria catalysts by surface step decoration , 2016, Nature Communications.

[31]  B. Mojet,et al.  Effects of Morphology of Cerium Oxide Catalysts for Reverse Water Gas Shift Reaction , 2016, Catalysis Letters.

[32]  S. Tsukimoto,et al.  Cerium Oxide Nanorods with Unprecedented Low‐Temperature Oxygen Storage Capacity , 2016, Advanced materials.

[33]  Ronghui Zhou,et al.  Shaped Ceria Nanocrystals Catalyze Efficient and Selective Para-Hydrogen-Enhanced Polarization. , 2015, Angewandte Chemie.

[34]  L. Torrente‐Murciano,et al.  Effect of nanostructured support on the WGSR activity of Pt/CeO2 catalysts , 2015 .

[35]  S. Maschio,et al.  Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity , 2015, Angewandte Chemie.

[36]  S. Senanayake,et al.  The influence of nano-architectured CeOx supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction , 2015 .

[37]  Min Wei,et al.  Catalytic behavior of supported Ru nanoparticles on the {1 0 0}, {1 1 0}, and {1 1 1} facet of CeO2 , 2015 .

[38]  Zhe Zhang,et al.  An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines , 2015 .

[39]  T. García,et al.  The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation , 2015 .

[40]  M. Beck,et al.  Size-Dependent Appearance of Intrinsic Oxq “Activated Oxygen” Molecules on Ceria Nanoparticles , 2015 .

[41]  E. Tchernychova,et al.  Nanoshaped CuO/CeO2 Materials: Effect of the Exposed Ceria Surfaces on Catalytic Activity in N2O Decomposition Reaction , 2015 .

[42]  L. Marks,et al.  Adhesion and Atomic Structures of Gold on Ceria Nanostructures: The Role of Surface Structure and Oxidation State of Ceria Supports. , 2015, Nano letters.

[43]  Kebin Zhou,et al.  Support Morphology-Dependent Catalytic Activity of Pd/CeO₂ for Formaldehyde Oxidation. , 2015, Environmental science & technology.

[44]  H. Okuno,et al.  Critical Influence of Nanofaceting on the Preparation and Performance of Supported Gold Catalysts , 2015 .

[45]  N. Renuka,et al.  Supercharged ceria quantum dots with exceptionally high oxygen buffer action , 2015 .

[46]  K. Patil,et al.  Shape-selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. , 2015, ACS applied materials & interfaces.

[47]  D. Fino,et al.  Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity , 2015 .

[48]  Zili Wu,et al.  Spectroscopic Investigation of Surface-Dependent Acid–Base Property of Ceria Nanoshapes , 2015 .

[49]  S. Seal,et al.  Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing. , 2015, Nanoscale.

[50]  D. Mullins The surface chemistry of cerium oxide , 2015 .

[51]  L. Marks,et al.  Catalysis by Materials with Well-Defined Structures , 2015 .

[52]  F. Krumeich,et al.  Opposite face sensitivity of CeO₂ in hydrogenation and oxidation catalysis. , 2014, Angewandte Chemie.

[53]  Zhongchang Wang,et al.  Synthesis and atomic-scale characterization of CeO2 nano-octahedrons , 2014 .

[54]  J. Llorca,et al.  Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts , 2014, Science.

[55]  Konstantin M. Neyman,et al.  Oxygen vacancies in self-assemblies of ceria nanoparticles , 2014 .

[56]  Weixin Huang,et al.  Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals , 2014 .

[57]  Haojun Huang,et al.  Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene , 2014 .

[58]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[59]  Y. Qu,et al.  Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications , 2014 .

[60]  P. Fornasiero,et al.  The role of ceria-based nanostructured materials in energy applications , 2014 .

[61]  M. Beck,et al.  Surface structure of catalytically-active ceria nanoparticles , 2014 .

[62]  W. Liu,et al.  Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction. , 2014, Physical chemistry chemical physics : PCCP.

[63]  Zili Wu,et al.  Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure–Function Relationships , 2014 .

[64]  C. Peden,et al.  Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol , 2014 .

[65]  Ping Liu,et al.  The activation of gold and the water-gas shift reaction: insights from studies with model catalysts. , 2014, Accounts of chemical research.

[66]  A. Bueno-López Diesel soot combustion ceria catalysts , 2014 .

[67]  E. Hensen,et al.  Defect chemistry of ceria nanorods , 2014 .

[68]  Mingrun Li,et al.  Transformylating amine with DMF to formamide over CeO2 catalyst. , 2014, Chemical communications.

[69]  L. Marks,et al.  Imaging the atomic surface structures of CeO2 nanoparticles. , 2014, Nano letters.

[70]  J. Llorca,et al.  Shape-Dependent Activity of Ceria in Soot Combustion , 2014 .

[71]  S. C. Parker,et al.  Morphology and Surface Analysis of Pure and Doped Cuboidal Ceria Nanoparticles , 2013 .

[72]  Zili Wu,et al.  Surface structure dependence of selective oxidation of ethanol on faceted CeO2 nanocrystals , 2013 .

[73]  Zhen-an Qiao,et al.  Shape-controlled ceria-based nanostructures for catalysis applications. , 2013, ChemSusChem.

[74]  A. Datye,et al.  Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. , 2013, ChemSusChem.

[75]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[76]  B. Shanks,et al.  Catalysis with ceria nanocrystals: Bio-oil model compound ketonization , 2013 .

[77]  F. Calaza,et al.  Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide , 2013, Topics in Catalysis.

[78]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[79]  W. Wang,et al.  Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. , 2013, Nanoscale.

[80]  Robert W. J. Scott,et al.  Ceria Nanocubes: Dependence of the Electronic Structure on Synthetic and Experimental Conditions , 2013 .

[81]  J. Paier,et al.  Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. , 2013, Chemical reviews.

[82]  Stefano Agnoli,et al.  Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. , 2013, Angewandte Chemie.

[83]  J. Liu,et al.  Tuning the shape of ceria nanomaterials for catalytic applications , 2013 .

[84]  B. Puértolas,et al.  Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons , 2013 .

[85]  N. Renuka,et al.  Ceria rhombic microplates: Synthesis, characterization and catalytic activity , 2013 .

[86]  D. Ihiawakrim,et al.  Three-Dimensional Tomographic Analyses of CeO2 Nanoparticles , 2013 .

[87]  J. Conesa,et al.  Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support , 2013 .

[88]  K. Hermansson,et al.  Supercharged Low-Temperature Oxygen Storage Capacity of Ceria at the Nanoscale. , 2013, The journal of physical chemistry letters.

[89]  Q. Xin,et al.  Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions. , 2013, Journal of the American Chemical Society.

[90]  C. Adamo,et al.  Surface-dependent oxidation of H2 on CeO2 surfaces , 2013 .

[91]  J. Llorca,et al.  Higher activity of diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes , 2012 .

[92]  Wenjie Shen,et al.  Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. , 2012, Journal of the American Chemical Society.

[93]  Xue-qing Gong,et al.  A DFT+U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO2(111) and (110) surfaces. , 2012, Physical chemistry chemical physics : PCCP.

[94]  Liyi Shi,et al.  Shape-controlled synthesis and catalytic application of ceria nanomaterials. , 2012, Dalton transactions.

[95]  Lan-sun Zheng,et al.  Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra , 2012 .

[96]  B. Ye,et al.  Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity , 2012 .

[97]  G. Vilé,et al.  Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. , 2012, Angewandte Chemie.

[98]  Liquan Chen,et al.  Nanostructured ceria-based materials: synthesis, properties, and applications , 2012 .

[99]  Qiao Chen,et al.  Superoxide and Peroxide Species on CeO2(111), and Their Oxidation Roles , 2012 .

[100]  Saji George,et al.  Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. , 2012, ACS nano.

[101]  Liyi Shi,et al.  Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane , 2012 .

[102]  E. Aneggi,et al.  On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion , 2012 .

[103]  Yadong Li,et al.  Catalysis based on nanocrystals with well-defined facets. , 2012, Angewandte Chemie.

[104]  Hyuck-Mo Lee,et al.  CO oxidation mechanism on CeO(2)-supported Au nanoparticles. , 2012, Journal of the American Chemical Society.

[105]  Zili Wu,et al.  On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes , 2012 .

[106]  G. Lu,et al.  Facile synthesis of 3D flowerlike CeO2 microspheres under mild condition with high catalytic performance for CO oxidation. , 2011, Journal of Colloid and Interface Science.

[107]  Zhi-You Zhou,et al.  Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. , 2011, Chemical Society reviews.

[108]  F. Gao,et al.  Morphology and Crystal‐Plane Effects of Nanoscale Ceria on the Activity of CuO/CeO2 for NO Reduction by CO , 2011 .

[109]  U. Bhatta,et al.  Dynamics of Polar Surfaces on Ceria Nanoparticles Observed In Situ with Single‐Atom Resolution , 2011 .

[110]  C. L. Cheung,et al.  Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. , 2011, Nano letters.

[111]  R. Gorte,et al.  Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. , 2011, Angewandte Chemie.

[112]  Thorsten Staudt,et al.  Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. , 2011, Nature materials.

[113]  Y. Tong,et al.  Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods , 2011 .

[114]  Konstantin M. Neyman,et al.  Formation of Superoxide Anions on Ceria Nanoparticles by Interaction of Molecular Oxygen with Ce3+ Sites , 2011 .

[115]  H. Tan,et al.  Three-Dimensional Structure of CeO2 Nanocrystals , 2011 .

[116]  F. Illas,et al.  Relative Stabilities of Low Index and Stepped CeO2 Surfaces from Hybrid and GGA + U Implementations of Density Functional Theory , 2011 .

[117]  Jing Zhang,et al.  Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. , 2011, Nano letters.

[118]  Konstantin M. Neyman,et al.  Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale , 2010 .

[119]  H. Imai,et al.  Characteristics of CeO2 Nanocubes and Related Polyhedra Prepared by Using a Liquid−Liquid Interface , 2010 .

[120]  Wei Wang,et al.  A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies , 2010 .

[121]  C. Campbell,et al.  Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding , 2010, Science.

[122]  Zili Wu,et al.  Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[123]  D. Duprez,et al.  Ceria-based solid catalysts for organic chemistry. , 2010, ChemSusChem.

[124]  R. Gorte Ceria in catalysis: From automotive applications to the water–gas shift reaction , 2010 .

[125]  M. Flytzani-Stephanopoulos,et al.  Steam reforming of methanol over ceria and gold-ceria nanoshapes , 2010 .

[126]  S. Tsang,et al.  Size dependent oxygen buffering capacity of ceria nanocrystals. , 2010, Chemical communications.

[127]  Rongrong Cui,et al.  Template-Free Synthesis and Self-Assembly of CeO2 Nanospheres Fabricated with Foursquare Nanoflakes , 2009 .

[128]  Juan Li,et al.  Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles , 2009 .

[129]  B. Delley,et al.  Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation , 2009 .

[130]  Konstantin M. Neyman,et al.  Exploring Ce3+/Ce4+ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations. , 2009, The Journal of chemical physics.

[131]  T. Allston,et al.  A Study of Lattice Expansion in CeO2 Nanoparticles by Transmission Electron Microscopy , 2009 .

[132]  Ya-Wen Zhang,et al.  Controlled synthesis and assembly of ceria-based nanomaterials. , 2009, Journal of colloid and interface science.

[133]  P. Midgley,et al.  3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. , 2009, Angewandte Chemie.

[134]  O. Bondarchuk,et al.  Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles , 2009 .

[135]  Yadong Li,et al.  Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. , 2009, Journal of the American Chemical Society.

[136]  Weiguo Song,et al.  Dimension-Manipulated Ceria Nanostructures (0D Uniform Nanocrystals, 2D Polycrystalline Assembly, and 3D Mesoporous Framework) from Cerium Octylate Precursor in Solution Phases and Their CO Oxidation Activities , 2008 .

[137]  X. Xing,et al.  Controlled Synthesis of CeO2 Flower-Like and Well-Aligned Nanorod Hierarchical Architectures by a Phosphate-Assisted Hydrothermal Route , 2008 .

[138]  R. O. Fuentes,et al.  Formation and Structural Properties of Ce−Zr Mixed Oxide Nanotubes , 2008 .

[139]  Chunhua Yan,et al.  Controlled synthesis of rare earth nanostructures , 2008 .

[140]  Zheng Hu,et al.  Great Influence of Anions for Controllable Synthesis of CeO2Nanostructures: From Nanorods to Nanocubes , 2008 .

[141]  Caixia Xu,et al.  Template-free Synthesis of Single-Crystalline-like CeO2 Hollow Nanocubes , 2008 .

[142]  Liyi Shi,et al.  CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods , 2008 .

[143]  S. Fabris,et al.  CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations , 2008 .

[144]  Liyi Shi,et al.  Template‐Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes , 2008 .

[145]  M. Flytzani-Stephanopoulos,et al.  Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. , 2008, Angewandte Chemie.

[146]  X. Xing,et al.  Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution , 2008 .

[147]  Xiangyang Ma,et al.  Ligand-free Self-Assembly of Ceria Nanocrystals into Nanorods by Oriented Attachment at Low Temperature , 2007 .

[148]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[149]  T. Kumagai,et al.  Comparative studies of nanostructural and morphological evolution of CeO2 thin films induced by high-temperature annealing , 2007 .

[150]  S. Fabris,et al.  Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria : Density functional theory calculations , 2007 .

[151]  Kebin Zhou,et al.  Highly reducible CeO2 nanotubes , 2007 .

[152]  Jing Zhang,et al.  Colloidal Ceria Nanocrystals: A Tailor‐Made Crystal Morphology in Supercritical Water , 2007 .

[153]  A. Eyring,et al.  Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles , 2006 .

[154]  L. Gao,et al.  Controlled synthesis and self-assembly of CeO2 nanocubes. , 2006, Journal of the American Chemical Society.

[155]  Y. Kawazoe,et al.  Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations , 2006 .

[156]  D. Golberg,et al.  Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes , 2005 .

[157]  Ya-Wen Zhang,et al.  Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. , 2005, The journal of physical chemistry. B.

[158]  S. C. Parker,et al.  The electronic structure of oxygen vacancy defects at the low index surfaces of ceria , 2005 .

[159]  T. Hyeon,et al.  Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. , 2005, Angewandte Chemie.

[160]  F. Wu,et al.  CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. , 2005, The journal of physical chemistry. B.

[161]  W. Han,et al.  Formation and oxidation state of CeO(2-x) nanotubes. , 2005, Journal of the American Chemical Society.

[162]  J. Llorca,et al.  Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders , 2005 .

[163]  Ling Zhou,et al.  Electron Localization Determines Defect Formation on Ceria Substrates , 2005, Science.

[164]  Jimmy C. Yu,et al.  Morphology-Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures , 2005 .

[165]  M. Hirano,et al.  Hydrothermal Synthesis of Cerium(IV) Oxide , 2005 .

[166]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[167]  Avelino Corma,et al.  Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. , 2005, Journal of the American Chemical Society.

[168]  S. C. Parker,et al.  Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria , 2005 .

[169]  B. Su,et al.  Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[170]  N. Bugayeva A Study of the Structure of CeO 2 Nanorods , 2005 .

[171]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[172]  S. C. Parker,et al.  Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation. , 2004, Chemical communications.

[173]  A. Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[174]  Zhong Lin Wang,et al.  Polyhedral Shapes of CeO2 Nanoparticles , 2003 .

[175]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[176]  Xun Wang,et al.  Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. , 2002, Angewandte Chemie.

[177]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[178]  W. Huebner,et al.  Size-induced lattice relaxation in CeO 2 nanoparticles , 2001 .

[179]  J. Harding,et al.  The surface structure of CeO2(001) single crystals studied by elevated temperature STM , 2001 .

[180]  K. Hermansson,et al.  Dynamics, structure and energetics of the (111), (011) and (001) surfaces of ceria , 2000 .

[181]  Y. Kawazoe,et al.  Lattice relaxation of monosize CeO2-x nanocrystalline particles , 1999 .

[182]  U. Helmersson,et al.  Sharp microfaceting of (001)-oriented cerium dioxide thin films and the effect of annealing on surface morphology , 1999 .

[183]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[184]  J. Conesa Computer modeling of surfaces and defects on cerium dioxide , 1995 .

[185]  S. C. Parker,et al.  The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide , 1994 .