Partially entangled states bridge in quantum teleportation

The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

[1]  Hong-Yi Dai,et al.  Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state , 2004 .

[2]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[3]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[4]  Andrew G. White,et al.  Measuring entanglement and entanglement measures , 2000, QELS 2000.

[5]  Gustavo Rigolin,et al.  Unity fidelity multiple teleportation using partially entangled states , 2008, 0807.3549.

[6]  Jaromir Fiurasek,et al.  Distillation and purification of symmetric entangled Gaussian states , 2010, 1011.0824.

[7]  G. Guo,et al.  Optimal entanglement purification via entanglement swapping , 2000, quant-ph/0005125.

[8]  D. Jaksch,et al.  Singlet generation in mixed-state quantum networks , 2009, 0912.3214.

[9]  Hai-Jing Cao,et al.  Teleportation of an unknown bipartite state via non-maximally entangled two-particle state , 2006 .

[10]  Xu-Tao Yu,et al.  Distributed wireless quantum communication networks , 2013 .

[11]  Satyabrata Adhikari,et al.  Optimal quantum communication using multiparticle partially entangled states , 2013 .

[12]  Gustavo Rigolin,et al.  Generalized quantum-state sharing , 2006 .

[13]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Man Zhong-xiao,et al.  Quantum secure direct communication via partially entangled states , 2007 .

[15]  Yu-Bo Sheng,et al.  Single-photon entanglement concentration for long-distance quantum communication , 2009, Quantum Inf. Comput..

[16]  Andrzej Grudka,et al.  Nonmaximally entangled states can be better for multiple linear optical teleportation. , 2008, Physical review letters.

[17]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[18]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[19]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[20]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[21]  Gilad Gour Faithful teleportation with partially entangled states , 2004 .

[22]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[23]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[24]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[25]  Masahide Sasaki,et al.  Entanglement distillation from Gaussian input states , 2010 .

[26]  Xutao Yu,et al.  Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation , 2014 .

[27]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[28]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[29]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[30]  Guo Guang-Can,et al.  Probabilistic Teleportation of an Arbitrary Two-particle State , 2001 .

[31]  Masahito Hayashi General formulas for fixed-length quantum entanglement concentration , 2006, IEEE Transactions on Information Theory.

[32]  Guang-Can Guo,et al.  Probabilistic teleportation of two-particle entangled state , 2000 .

[33]  Shou Zhang,et al.  Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons , 2010 .

[34]  Shengmei Zhao,et al.  Efficient entanglement concentration for arbitrary less-entangled NOON states , 2012, Quantum Information Processing.

[35]  Sheng-Tzong Cheng,et al.  Quantum communication for wireless wide-area networks , 2005, IEEE J. Sel. Areas Commun..

[36]  Zhi-Xi Wang,et al.  Experimental detection of quantum entanglement , 2013 .

[37]  Entanglement purification of gaussian continuous variable quantum states , 1999, QELS 2000.

[38]  Fengli Yan,et al.  Probabilistic teleportation of unknown two-particle state via POVM , 2005 .

[39]  Yan Feng-li,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[40]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[41]  Zai-Chen Zhang,et al.  Distributed wireless quantum communication networks with partially entangled pairs , 2014 .