Fundamental noise limits for miniature acoustic and vibration sensors

Recent technological advances in microfabrication and fiber optics have made practical the construction of very small, sensitive sensors for acoustic or vibration measurements. As the sensitivity is increased or the size is decreased, a sensor becomes more susceptible to mechanical noise resulting from molecular agitation. Traditional noise analysis is often focused exclusively on electrical or optical noise ; consequently, mechanical-thermal noise may not be considered in new types of sensors until the prototype testing reveals an unexpectedly high noise floor. Fortunately, mechanical-thermal noise is relatively easy to estimate early in the design process because the equivalent noise force is only a function of the temperature and the mechanical losses in the sensor. There are a number of specific techniques that are applicable for evaluating either the total mechanical-thermal noise or the spectral distribution of that noise for simple or complex sensors. These techniques are presented and, in addition, a summary of other noise components is given in the context of design guidelines for high-sensitivity sensors.

[1]  A. B. Pippard The physics of vibration: Index , 1989 .

[2]  T. Hofler,et al.  A fiber-optic interferometric seismometer , 1987 .

[3]  F. W. Sears,et al.  Thermodynamics, kinetic theory, and statistical thermodynamics , 1975 .

[4]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[5]  H. Saunders,et al.  Fundamentals of Acoustics (3rd Ed.) , 1983 .

[6]  T. Fenchel,et al.  GEOTAXIS IN THE CILIATED PROTOZOON LOXODES , 1984 .

[7]  E. C. Carr,et al.  Observation of coherent Rayleigh noise in single-source bidirectional optical fiber systems , 1988 .

[8]  R. Giffard Ultimate sensitivity limit of a resonant gravitational wave antenna using a linear motion detector , 1976 .

[9]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[10]  Earl D. Gates Introduction to Electronics , 1997 .

[11]  C. Henry Phase noise in semiconductor lasers , 1986 .

[12]  J. W. Young Optimization of acoustic receiver noise performance , 1977 .

[13]  J. Johnson Thermal Agitation of Electricity in Conductors , 1928 .

[14]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[15]  Gisela Hess,et al.  A subminiature condenser microphone with silicon nitride membrane and silicon back plate , 1989 .

[16]  Frank W. Cuomo,et al.  The analysis of noises in a fiber optic microphone , 1992 .

[17]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[18]  Alan B. Tveten,et al.  Single-mode diode laser phase noise , 1981 .

[19]  Paul G. Hoel,et al.  Elementary statistics , 1971 .

[20]  T. M. Chen,et al.  A tutorial approach to the thermal noise in metals , 1991 .

[21]  D. Marcuse,et al.  Principles of quantum electronics , 1980 .

[22]  W. Kühnel,et al.  Micromachined subminiature condenser microphones in silicon , 1992 .

[23]  W. Sansen Sensors in silicon , 1983 .

[24]  K.E. Petersen,et al.  Micromechanical accelerometer integrated with MOS detection circuitry , 1982, IEEE Transactions on Electron Devices.

[25]  C. A. Taylor The physics of vibration , 1979 .

[26]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[27]  W. Press Flicker noises in astronomy and elsewhere. , 1978 .

[28]  Steven L. Garrett,et al.  Thermal noise in a fiber optic sensor , 1988 .

[29]  A. B. Pippard The physics of vibration: THE SIMPLE CLASSICAL VIBRATOR , 1989 .

[30]  J. B. Starr Squeeze-film damping in solid-state accelerometers , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[31]  A. van der Ziel,et al.  Flicker Noise in Electronic Devices , 1979 .

[32]  F. Robinson,et al.  Noise and fluctuations in electronic devices and circuits , 1974 .

[33]  F. Parodi,et al.  A silicon condenser microphone with a highly perforated backplate , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[34]  G. Uhlenbeck,et al.  A Problem in Brownian Motion , 1929 .

[35]  Robert H. Mellen,et al.  The Thermal‐Noise Limit in the Detection of Underwater Acoustic Signals , 1952 .

[36]  Paul W. Tuinenga,et al.  SPICE: A Guide to Circuit Simulation and Analysis Using PSpice , 1988 .

[37]  H. J. J. Braddick,et al.  The Physics of Experimental Method , 1955 .

[38]  Govind P. Agrawal,et al.  Noise in semiconductor lasers and its impact on optical communication systems , 1991, Other Conferences.

[39]  L.M. Roylance,et al.  A batch-fabricated silicon accelerometer , 1979, IEEE Transactions on Electron Devices.

[40]  A. Pugh The art of electronics. 2nd edn: By Paul Horowitz and Winfield Hill. Pp. 1125. Cambridge University Presss. 1989. £29.95, US$49.50 , 1990 .

[41]  H. Jerman,et al.  Wide dynamic range direct accelerometer , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.