Challenges of understanding brain function by selective modulation of neuronal subpopulations

Neuronal networks confront researchers with an overwhelming complexity of interactions between their elements. A common approach to understanding neuronal processing is to reduce complexity by defining subunits and infer their functional role by selectively modulating them. However, this seemingly straightforward approach may lead to confusing results if the network exhibits parallel pathways leading to recurrent connectivity. We demonstrate limits of the selective modulation approach and argue that, even though highly successful in some instances, the approach fails in networks with complex connectivity. We argue to refine experimental techniques by carefully considering the structural features of the neuronal networks involved. Such methods could dramatically increase the effectiveness of selective modulation and may lead to a mechanistic understanding of principles underlying brain function.

[1]  David C Rowland,et al.  Generation of a Synthetic Memory Trace , 2012, Science.

[2]  C. Koch Modular Biological Complexity , 2012, Science.

[3]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[4]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[5]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  A. Aertsen,et al.  Beyond the Cortical Column: Abundance and Physiology of Horizontal Connections Imply a Strong Role for Inputs from the Surround , 2011, Front. Neurosci..

[8]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[9]  D. Modha,et al.  Network architecture of the long-distance pathways in the macaque brain , 2010, Proceedings of the National Academy of Sciences.

[10]  Jill Daniels,et al.  Beneath the surface. , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[11]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[12]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[13]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[14]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[15]  Mark S. Granovetter Economic Action and Social Structure: The Problem of Embeddedness , 1985, American Journal of Sociology.

[16]  Stefan Rotter,et al.  How Structure Determines Correlations in Neuronal Networks , 2011, PLoS Comput. Biol..

[17]  N. Logothetis Bold claims for optogenetics , 2010, Nature.

[18]  Tanguy Chouard,et al.  Darwin 200: Beneath the surface , 2008, Nature.

[19]  G. Fritsch,et al.  Electric excitability of the cerebrum (Über die elektrische Erregbarkeit des Grosshirns) , 2009, Epilepsy & Behavior.

[20]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[21]  A. Luria The Working Brain: An Introduction To Neuropsychology , 1976 .

[22]  Joost X. Maier,et al.  Multisensory Integration of Dynamic Faces and Voices in Rhesus Monkey Auditory Cortex , 2005 .

[23]  Maarten van Steen,et al.  Graph Theory and Complex Networks: An Introduction , 2010 .

[24]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[25]  G. Laurent,et al.  Conditional modulation of spike-timing-dependent plasticity for olfactory learning , 2012, Nature.

[26]  Arvind Kumar,et al.  Emergence of population synchrony in a layered network of the cat visual cortex , 2007, Neurocomputing.

[27]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[28]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[29]  Dae-Shik Kim,et al.  Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.

[30]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[31]  I. Kevrekidis,et al.  Optical imaging and control of genetically designated neurons in functioning circuits. , 2005, Annual review of neuroscience.

[32]  G. Shepherd,et al.  An integrated approach to classifying neuronal phenotypes , 2005, Nature Reviews Neuroscience.

[33]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[34]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[35]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[36]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[37]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[38]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[39]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[40]  Arvind Kumar,et al.  The High-Conductance State of Cortical Networks , 2008, Neural Computation.

[41]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[42]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[43]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[44]  O. Devinsky,et al.  The excitable cerebral cortex: Fritsch G, Hitzig E. Über die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wissen 1870;37:300–32. , 2009, Epilepsy & Behavior.

[45]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[46]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[47]  Ad Aertsen,et al.  From Synchrony to Harmony: Ideas on the Function of Neural Assemblies and on the Interpretation of Neural Synchrony , 1986 .

[48]  Ad Aertsen,et al.  Functional consequences of correlated excitatory and inhibitory conductances in cortical networks , 2010, Journal of Computational Neuroscience.

[49]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  Ching-tai Lin Structural controllability , 1974 .

[51]  Z. Duan,et al.  GRAPH THEORY AND COMPLEX NETWORKS , 2008 .

[52]  J. Kalaska,et al.  Neural mechanisms for interacting with a world full of action choices. , 2010, Annual review of neuroscience.

[53]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[54]  Skirmantas Janušonis,et al.  Relationships among variables and their equilibrium values: caveats of time‐less interpretation , 2012, Biological reviews of the Cambridge Philosophical Society.

[55]  G. Rota The Number of Partitions of a Set , 1964 .

[56]  Alison L. Barth,et al.  An Embedded Subnetwork of Highly Active Neurons in the Neocortex , 2010, Neuron.

[57]  C. Gonnella The Working Brain: An Introduction to Neuropsychology , 1976 .

[58]  Ad Aertsen,et al.  Conservation and dissipation in Neurodynamics , 1987 .

[59]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[60]  Stefan Rotter,et al.  Higher-Order Statistics of Input Ensembles and the Response of Simple Model Neurons , 2003, Neural Computation.

[61]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[62]  Giuliano Iurilli,et al.  Sound-Driven Synaptic Inhibition in Primary Visual Cortex , 2012, Neuron.

[63]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[64]  N. Logothetis,et al.  The effects of electrical microstimulation on cortical signal propagation , 2010, Nature Neuroscience.

[65]  W. Rugh Linear System Theory , 1992 .

[66]  Hideyuki Câteau,et al.  Controlling Synfire Chain by Inhibitory Synaptic Input , 2007 .

[67]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[68]  Arvind Kumar,et al.  Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity , 2012, PLoS Comput. Biol..

[69]  I. Nelken,et al.  Physiological and Anatomical Evidence for Multisensory Interactions in Auditory Cortex , 2006, Cerebral cortex.

[70]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[71]  Tomoki Fukai,et al.  Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model , 2011, Front. Comput. Neurosci..

[72]  A. Aertsen,et al.  Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding , 2010, Nature Reviews Neuroscience.