Polynomial alias higher degree fuzzy transform of complex-valued functions

Abstract In this article, we propose a general approach to the computation of components of the direct higher degree fuzzy transform. Apart from the orthogonal bases of the subspaces of polynomials of weighted Hilbert spaces with respect to a generalized uniform fuzzy partition, which are used in all papers on fuzzy transform of higher degree, we admit also the non-orthogonal bases. An advantage of using non-orthogonal bases consists in the possibility of replacing orthogonal polynomials, derivation of which by the Gram–Schmidt orthogonalization process can be questionable difficult or imprecise, by suitable non-orthogonal polynomials of much simpler form. We present a simple matrix calculus and show how it can be used to introduce the components of the direct higher degree fuzzy transform. With the help of the monomial basis, we prove a convergence theorem and an approximation theorem for the higher degree fuzzy transform. The results are illustrated by examples including a comparison with standard methods.

[1]  Jin Hee Yoon,et al.  Forecasting using F-transform based on bootstrap technique , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[2]  Irina Perfilieva Fuzzy Transforms , 2004, Trans. Rough Sets.

[3]  R. Wooldridge,et al.  Advanced Engineering Mathematics , 1967, The Mathematical Gazette.

[4]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[5]  Hung T. Nguyen,et al.  A First Course in Fuzzy Logic , 1996 .

[6]  Olivier Strauss,et al.  An interval-valued inversion of the non-additive interval-valued F-transform: Use for upsampling a signal , 2016, Fuzzy Sets Syst..

[7]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[8]  J. Wrench,et al.  The determination of the Chebyshev approximating polynomial for a differentiable function , 1959 .

[9]  Vilém Novák,et al.  ANALYSIS OF PERIODICAL TIME SERIES USING SOFT COMPUTING METHODS , 2008 .

[10]  Salvatore Sessa,et al.  A segmentation method for images compressed by fuzzy transforms , 2010, Fuzzy Sets Syst..

[11]  Michal Holčapek,et al.  TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE , 2018 .

[12]  Vladik Kreinovich,et al.  Fuzzy transforms of higher order approximate derivatives: A theorem , 2011, Fuzzy Sets Syst..

[13]  Giuseppe Patanè,et al.  Fuzzy transform and least-squares approximation: Analogies, differences, and generalizations , 2011, Fuzzy Sets Syst..

[14]  Vilém Novák,et al.  Analysis and prediction of time series using fuzzy transform , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[15]  Michal Holcapek,et al.  A probability density function estimation using F-transform , 2010, Kybernetika.

[16]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[17]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[18]  Vladik Kreinovich,et al.  Filtering out high frequencies in time series using F-transform , 2014, Inf. Sci..

[19]  G. Meinardus Approximation of Functions: Theory and Numerical Methods , 1967 .

[20]  Michal Holcapek,et al.  Suppression of High Frequencies in Time Series Using Fuzzy Transform of Higher Degree , 2016, IPMU.

[21]  Vilém Novák,et al.  Fuzzy transform in the analysis of data , 2008, Int. J. Approx. Reason..

[22]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[23]  N. Young An Introduction to Hilbert Space , 1988 .

[24]  Vilém Novák,et al.  Analysis of stationary processes using fuzzy transform , 2013, EUSFLAT Conf..

[25]  George Lindfield,et al.  Numerical Methods Using MATLAB , 1998 .

[26]  Salvatore Sessa,et al.  An image coding/decoding method based on direct and inverse fuzzy transforms , 2008, Int. J. Approx. Reason..

[27]  Jean-François Crouzet Fuzzy projection versus inverse fuzzy transform as sampling/interpolation schemes , 2012, Fuzzy Sets Syst..

[28]  Martins Kokainis,et al.  Approximation properties of higher degree F-transforms based on B-splines , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[29]  T. Tichý,et al.  An application of an n-dimensional fuzzy smoothing filter in financial modeling , 2012, 2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC).

[30]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[31]  Dug Hun Hong,et al.  Generalized uniform fuzzy partition: The solution to Holčapek's open problem , 2016, Fuzzy Sets Syst..

[32]  Luigi Troiano,et al.  Supporting trading strategies by inverse fuzzy transform , 2011, Fuzzy Sets Syst..

[33]  Olivier Strauss,et al.  Non-additive interval-valued F-transform , 2015, Fuzzy Sets Syst..

[34]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[35]  Irina Perfilieva Fuzzy Transforms and Their Applications to Image Compression , 2005, WILF.

[36]  Svetlana Asmuss,et al.  On approximation properties of spline based F-transform with respect to fuzzy m-partition , 2013 .

[37]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  Petr Hurtík,et al.  F 1-transform Edge Detector Inspired by Canny's Algorithm , 2012, IPMU.

[39]  Martina Danková,et al.  Towards F-transform of a Higher Degree , 2009, IFSA/EUSFLAT Conf..

[40]  Vilém Novák,et al.  Multivariate fuzzy transform of complex-valued functions determined by monomial basis , 2017, Soft Comput..

[41]  Salvatore Sessa,et al.  Fuzzy transforms method and attribute dependency in data analysis , 2010, Inf. Sci..

[42]  Michal Holcapek,et al.  Discrete fuzzy transform of higher degree , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[43]  P. Mikusinski,et al.  Introduction to Hilbert spaces with applications , 1990 .

[44]  Petr Hurtík,et al.  Differentiation by the F-transform and application to edge detection , 2016, Fuzzy Sets Syst..

[45]  Vladik Kreinovich,et al.  A new reconstruction from the F-transform components , 2016, Fuzzy Sets Syst..

[46]  Luciano Stefanini,et al.  F-transform with parametric generalized fuzzy partitions , 2011, Fuzzy Sets Syst..

[47]  Jaakko Astola,et al.  Local Approximation Techniques in Signal and Image Processing (SPIE Press Monograph Vol. PM157) , 2006 .

[48]  Salvatore Sessa,et al.  Fuzzy transforms method in prediction data analysis , 2011, Fuzzy Sets Syst..

[49]  Martina Danková,et al.  Towards a higher degree F-transform , 2011, Fuzzy Sets Syst..

[50]  Petr Hurtík,et al.  Fuzzy Transform Theory in the View of Image Registration Application , 2014, IPMU.

[51]  L. Veidinger,et al.  On the numerical determination of the best approximations in the Chebyshev sense , 1960 .

[52]  Martin Stepnicka,et al.  Numerical solution of partial differential equations with help of fuzzy transform , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[53]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[54]  Vladik Kreinovich,et al.  Necessary and sufficient conditions for generalized uniform fuzzy partitions , 2015, Fuzzy Sets Syst..

[55]  Michal Holcapek,et al.  Discrete multivariate F-transform of higher degree , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[56]  Michal Holcapek,et al.  A smoothing filter based on fuzzy transform , 2011, Fuzzy Sets Syst..

[57]  Irina Perfilieva,et al.  A new fuzzy approximation method to Cauchy problems by fuzzy transform , 2016, Fuzzy Sets Syst..

[58]  Vilém Novák,et al.  Noise reduction in time series using F-transform , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).