An immersed discontinuous finite element method for Stokes interface problems

Abstract We present a discontinuous immersed finite element (IFE) method for Stokes interface problems on Cartesian meshes that do not require the mesh to be aligned with the interface. As such, the method allows unfitted meshes with elements cut by the interface and thus, may contain more than one fluid. On these unfitted meshes we construct an immersed Q 1 / Q 0 finite element space according to the location of the interface and pertinent interface jump conditions. The proposed Q 1 / Q 0 IFE shape functions have several desirable features such as the unisolvence and the partition of unity. We present several numerical examples to demonstrate that the proposed IFE spaces maintain the optimal approximation capability with respect to the polynomials used. We also show that related discontinuous IFE solutions of Stokes interface problems maintain the optimal convergence rates in both L 2 and broken H 1 norms.

[1]  J. Thomas Beale,et al.  ON THE ACCURACY OF FINITE DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES , 2006 .

[2]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[3]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[4]  Slimane Adjerid,et al.  A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .

[5]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[6]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[7]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[8]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[9]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[10]  A. Reusken Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .

[11]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[12]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[13]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[14]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[15]  K. Ito,et al.  An augmented approach for Stokes equations with a discontinuous viscosity and singular forces , 2007 .

[16]  Roberto F. Ausas,et al.  An improved finite element space for discontinuous pressures , 2010 .

[17]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[18]  Slimane Adjerid,et al.  HIGHER-ORDER IMMERSED DISCONTINUOUS GALERKIN METHODS , 2007 .

[19]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[20]  Xiaoming He,et al.  Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions , 2011 .

[21]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[22]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[23]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[24]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[25]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[26]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[27]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[28]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[29]  Zhilin Li The immersed interface method: a numerical approach for partial differential equations with interfaces , 1995 .

[30]  Weiwei Sun,et al.  Quadratic immersed finite element spaces and their approximation capabilities , 2006, Adv. Comput. Math..

[31]  I-Liang Chern,et al.  New Formulations for Interface Problems in Polar Coordinates , 2003, SIAM J. Sci. Comput..

[32]  Tao Lin,et al.  Linear and bilinear immersed finite elements for planar elasticity interface problems , 2012, J. Comput. Appl. Math..

[33]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .