Calculating Super Efficiency of DMUs for Ranking Units in Data Envelopment Analysis Based on SBM Model

There are a number of methods for ranking decision making units (DMUs), among which calculating super efficiency and then ranking the units based on the obtained amount of super efficiency are both valid and efficient. Since most of the proposed models do not provide the projection of Pareto efficiency, a model is developed and presented through this paper based on which in the projection of Pareto-efficient is obtained, in addition to calculating the amount of super efficiency. Moreover, the model is unit invariant, and is always feasible and makes the amount of inefficiency effective in ranking.

[1]  Jie Wu,et al.  Cross efficiency evaluation method based on weight-balanced data envelopment analysis model , 2012, Comput. Ind. Eng..

[2]  Ying Luo,et al.  Cross-efficiency evaluation based on ideal and anti-ideal decision making units , 2011, Expert Syst. Appl..

[3]  M. Zarepisheh,et al.  Modified MAJ model for ranking decision making units in data envelopment analysis , 2006, Appl. Math. Comput..

[4]  S. J. Sadjadi,et al.  A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran , 2011, Expert Syst. Appl..

[5]  Kaoru Tone,et al.  A slacks-based measure of efficiency in data envelopment analysis , 1997, Eur. J. Oper. Res..

[6]  F. Hosseinzadeh Lotfi,et al.  Using Monte Carlo method for ranking efficient DMUs , 2005, Appl. Math. Comput..

[7]  Yao Chen,et al.  THE BENEFITS OF NON-RADIAL VS. RADIAL SUPER-EFFICIENCY DEA: AN APPLICATION TO BURDEN-SHARING AMONGST NATO MEMBER NATIONS , 2004 .

[8]  F. Hosseinzadeh Lotfi,et al.  Super-efficiency in DEA by effectiveness of each unit in society , 2011, Appl. Math. Lett..

[9]  Joe Zhu,et al.  Super-efficiency DEA in the presence of infeasibility , 2011, Eur. J. Oper. Res..

[10]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[11]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[12]  Zilla Sinuany-Stern,et al.  Review of ranking methods in the data envelopment analysis context , 2002, Eur. J. Oper. Res..

[13]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[14]  Mohammad Khodabakhshi,et al.  Ranking all units in data envelopment analysis , 2012, Appl. Math. Lett..

[15]  Joe Zhu,et al.  Super-efficiency and DEA sensitivity analysis , 2001, Eur. J. Oper. Res..

[16]  P. Andersen,et al.  A procedure for ranking efficient units in data envelopment analysis , 1993 .

[17]  F. Hosseinzadeh Lotfi,et al.  A new method for ranking non-extreme efficient units in data envelopment analysis , 2013, Optim. Lett..

[18]  Nuria Ramón,et al.  Reducing differences between profiles of weights: A "peer-restricted" cross-efficiency evaluation , 2011 .

[19]  Majid Soleimani-Damaneh,et al.  On Pareto (dynamically) efficient paths , 2006, Int. J. Comput. Math..

[20]  Yao Chen,et al.  Measuring super-efficiency in DEA in the presence of infeasibility , 2005, Eur. J. Oper. Res..

[21]  Shabnam Razavyan,et al.  Ranking using l1-norm in data envelopment analysis , 2004, Appl. Math. Comput..

[22]  F. Hosseinzadeh Lotfi,et al.  Using the gradient line for ranking DMUs in DEA , 2004, Appl. Math. Comput..

[23]  Toshiyuki Sueyoshi,et al.  DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives , 1999 .

[24]  Joe Zhu,et al.  A slack-based measure of efficiency in context-dependent data envelopment analysis , 2005 .

[25]  Joe Zhu,et al.  Super-efficiency infeasibility and zero data in DEA , 2012, Eur. J. Oper. Res..

[26]  Joe Zhu,et al.  A modified super-efficiency DEA model for infeasibility , 2009, J. Oper. Res. Soc..

[27]  Alireza Amirteimoori DEA efficiency analysis: Efficient and anti-efficient frontier , 2007, Appl. Math. Comput..

[28]  Jiazhen Huo,et al.  Super-efficiency based on a modified directional distance function , 2013 .

[29]  F. Hosseinzadeh Lotfi,et al.  Ranking Efficient Units in DEA , 2011 .

[30]  Gholam Reza Jahanshahloo,et al.  A ranking method based on a full-inefficient frontier , 2006 .

[31]  F. Hosseinzadeh Lotfi,et al.  RANKING EFFICIENT DMUS USING THE TCHEBYCHEFF NORM , 2012 .

[32]  Mohsen Rostamy-Malkhalifeh,et al.  A Review of Ranking Models in Data Envelopment Analysis , 2013, J. Appl. Math..

[33]  Lai Soon Lee,et al.  An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis , 2011 .

[34]  C. A. Knox Lovell,et al.  Equivalent standard DEA models to provide super-efficiency scores , 2003, J. Oper. Res. Soc..

[35]  I-Chiang Wang,et al.  Efficiency Decomposition with Enhancing Russell Measure in Data Envelopment Analysis , 2010 .

[36]  Chiang Kao,et al.  Weight determination for consistently ranking alternatives in multiple criteria decision analysis , 2010 .

[37]  Jin-Xiao Chen,et al.  A modified super-efficiency measure based on simultaneous input-output projection in data envelopment analysis , 2011, Comput. Oper. Res..

[38]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[39]  Gholam Reza Jahanshahloo,et al.  A Complete Efficiency Ranking of Decision Making Units in Data Envelopment Analysis , 1999, Comput. Optim. Appl..

[40]  F. Hosseinzadeh Lotfi,et al.  A method for finding common set of weights by multiple objective programming in data envelopment analysis. , 2000 .

[41]  Shanling Li,et al.  A super-efficiency model for ranking efficient units in data envelopment analysis , 2007, Appl. Math. Comput..

[42]  Jie Wu,et al.  Determination of weights for ultimate cross efficiency using Shannon entropy , 2011, Expert Syst. Appl..

[43]  Alireza Amirteimoori,et al.  Ranking of decision making units in data envelopment analysis: A distance-based approach , 2005, Appl. Math. Comput..

[44]  Hasan Bal,et al.  Goal programming approaches for data envelopment analysis cross efficiency evaluation , 2011, Appl. Math. Comput..

[45]  Wilhelm Rödder,et al.  A consensual peer-based DEA-model with optimized cross-efficiencies - Input allocation instead of radial reduction , 2011, Eur. J. Oper. Res..